Skip to main content
Log in

Centers in domains with quadratic growth

  • Published:
Central European Journal of Mathematics

Abstract

Let F be a field, and let R be a finitely-generated F-algebra, which is a domain with quadratic growth. It is shown that either the center of R is a finitely-generated F-algebra or R satisfies a polynomial identity (is PI) or else R is algebraic over F. Let rR be not algebraic over F and let C be the centralizer of r. It is shown that either the quotient ring of C is a finitely-generated division algebra of Gelfand-Kirillov dimension 1 or R is PI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Artin, W. Schelter and J. Tate: “The centers of 3-dimensional Skylyanian algebras”, In: Barsotti Symposium in Algebraic Geometry (Abano Terme, 1991), Perspect. Math., Vol. 15, Academic Press, San Diego, CA, 1994, pp. 1–10.

    Google Scholar 

  2. M. Artin and J.T. Stafford: “Noncommutative graded domains with quadratic growth”, Invent. Math., Vol. 122(2), (1995), pp. 231–276.

    Article  MATH  MathSciNet  Google Scholar 

  3. J.P. Bell: private communication.

  4. J.P. Bell and L.W. Small: “Centralizers in domains of Gelfand-Kirillov dimension 2”, Bull. London Math. Soc., Vol. 36(6), pp. 779–785.

  5. G.M. Bergman: A note of growth functions of algebras and semigroups, mimeographed notes, University of California, Berkeley, 1978.

    Google Scholar 

  6. G. Krause and T. Lenagan: Growth of Algebras and Gelfand-Kirillov Dimension, Revised Edition, Graduate Studies in Mathematics, Vol. 22, American Society, Providence, 2000.

    Google Scholar 

  7. M. Lothaire, Algebraic Combinatorics of Words, Cambridge University Press 2002.

  8. J.C. McConnel and J.C. Robson: Noncommutative Noetherian Rings, Wiley Interscience, Chichester, 1987.

    Google Scholar 

  9. L.W. Small, J.T. Stafford and R.B. Warfield Jr: “Affine algebras of Gelfand-Kirillov dimension one are PI”, Math. Proc. Cambridge Phil. Soc., Vol. 97, (1984), pp. 407–414.

    Article  MathSciNet  Google Scholar 

  10. L.W. Small and R.B. Warfield, Jr: “Prime affine algebras of Gelfand-Kirillov dimension one”, J. Algebra, Vol. 91, (1984) pp. 384–389.

    Article  MathSciNet  Google Scholar 

  11. S.P. Smith and J.J. Zhang: “A remark of Gelfand-Kirillov dimension”, Proc. Amer. Math. Soc., Vol. 126(2), (1998), pp. 349–352.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Smoktunowicz: “On structure of domains with quadratic growth”, J. Algebra, Vol. 289(2), (2005), pp. 365–379.

    Article  MATH  MathSciNet  Google Scholar 

  13. J.T. Stafford and M. Van den Bergh: “Noncommutative curves and noncommutative surfaces”, Bull. Am. Math. Soc., Vol. 38(2), pp. 171–216.

  14. J.J. Zhang: “On lower transcendence degree”, Adv. Math., Vol. 139, (1998), pp. 157–193.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Smoktunowicz, A. Centers in domains with quadratic growth. centr.eur.j.math. 3, 644–653 (2005). https://doi.org/10.2478/BF02475624

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/BF02475624

Keywords

MSC (2000)

Navigation