Skip to main content
Log in

Bivariant Chern classes for morphisms with nonsingular target varieties

  • Published:
Central European Journal of Mathematics

Abstract

W. Fulton and R. MacPherson posed the problem of unique existence of a bivariant Chern class—a Grothendieck transformation from the bivariant theory F of constructible functions to the bivariant homology theory H. J.-P. Brasselet proved the existence of a bivariant Chern class in the category of embeddable analytic varieties with cellular morphisms. In general however, the problem of uniqueness is still unresolved. In this paper we show that for morphisms having nonsingular target varieties there exists another bivariant theory\(\tilde {\mathbb{F}}\) of constructible functions and a unique bivariant Chern class γ:\(\tilde {\mathbb{F}} \to {\mathbb{H}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-P. Brasselet: “Existence des classes de Chern en théorie bivariante”, Astérisque, Vol. 101–102, (1981), pp. 7–22.

    Google Scholar 

  2. J.-P. Brasselet, J. Schürmann and S. Yokura: “Bivariant Chern classes and Grothendieck transformations”, Math. AG/0404132.

  3. J.-P. Brasselet and M.-H. Schwartz: “Sur les classes de Chern d’un ensemble analytique complexe”, Astérisque, Vol. 82–83, (1981), pp. 93–148.

    MathSciNet  Google Scholar 

  4. N. Chriss and V. Ginzburg: Representation theory and complex geometry, Birkhäuser, 1997.

  5. A. Dimca: Sheaves in Topology, Springer-Verlag, 2004.

  6. W. Fulton: Intersection Theory, Springer-Verlag, 1984.

  7. W. Fulton and R. MacPherson: “Categorical frameworks for the study of singular spaces”, Memoirs of Amer. Math. Soc., Vol. 243, (1981).

  8. V. Ginzburg: “G-Modules, Springer’s Representations and Bivariant Chern Classes”, Adv. in Maths., Vol. 61, (1986), pp. 1–48.

    Article  MathSciNet  Google Scholar 

  9. V. Ginzburg: “Geometric methods in the representation theory of Hecke algebras and quantum groups”, In: A. Broer and A. Daigneault (Eds.): Representation theories and algebraic geometry (Montreal, PQ, 1997), Kluwer Acad. Publ., Dordrecht, 1998, pp. 127–183.

    Google Scholar 

  10. M. Kashiwara and P. Schapira: Sheaves on Manifolds, Springer-Verlag, 1990.

  11. G. Kennedy: “MacPherson’s Chern classes of singular algebraic varieties”, Comm. Algebra, Vol. 9 (18), (1990), pp. 2821–2839.

    MATH  Google Scholar 

  12. M. Kwieciński: “Formule du produit pour les classes caractéristiques deChern-Schwartz-MacPherson et homologie d’intersection”, C. R. Acad. Sci. Paris, Vol. 314, (1992) pp. 625–628.

    MATH  Google Scholar 

  13. M. Kwieciński: “Sur le transformé de Nash et la construction du graph de MacPherson”, In: Thèse, Université de Provence, 1994.

  14. M. Kwieciński and S. Yokura: “Product formula of the twisted MacPherson class”, Proc. Japan Acad., Vol. 68, (1992) pp. 167–171.

    MATH  Google Scholar 

  15. R. MacPherson: “Chern classes for singular algebraic varieties”, Ann. of Math., Vol. 100, (1974), pp. 423–432.

    Article  MATH  MathSciNet  Google Scholar 

  16. C. Sabbah: Espaces conormaux bivariants, Thèse, l’Université Paris, Vol. 7, 1986.

  17. P. Schapira: “Operations on constructible functions”, J. Pure Appl. Algebra, Vol. 72, (1991), pp. 83–93.

    Article  MATH  MathSciNet  Google Scholar 

  18. J. Schürmann: “A generalized Verdier-type Riemann-Roch theorem for Chern-Schwartz Mac-Pherson classes”, math. AG/0202175.

  19. J. Schürmann: “A general construction of partial Grothendieck transformations”, math. AG/0209299.

  20. J. Schürmann: Topology of singular spaces and constructible sheaves, Monografie Matematyczne, Vol. 63, (New Series), Birkhäuser, Basel, 2003.

    MATH  Google Scholar 

  21. M.-H. Schwartz: “Classes caractéristiques définies par une stratification d’unevariété analytique complexe”, C. R. Acad. Sci. Paris, Vol. 260, (1965), pp. 3262–3264, 3535–3537.

    MATH  MathSciNet  Google Scholar 

  22. M.-H. Schwartz: “Classes et caractères de Chern des espaces linéaires”, Pub. Int. Univ. Lille, 2 Fasc. 3, (1980).

  23. O. Viro: “Some integral calculus based on the Euler characteristic”, Springer Lect. Notes Math., Vol. 1346, (1989), pp. 127–138.

    Article  MathSciNet  Google Scholar 

  24. S. Yokura: “On a Verdier-type Riemann-Roch for Chern-Schwartz-MacPherson class”, Topology and Its Applications, Vol. 94, (1999), pp. 315–327.

    Article  MATH  MathSciNet  Google Scholar 

  25. S. Yokura: “On the uniqueness problem of the bivariant Chern classes”, Documenta Mathematica, Vol. 7, (2002), pp. 133–142.

    MATH  MathSciNet  Google Scholar 

  26. S. Yokura: “Bivariant theories of constructible functions and Grothendieck transformations”, Topology and Its Applications, Vol. 123, (2002), pp. 283–296.

    Article  MATH  MathSciNet  Google Scholar 

  27. J. Zhou: Classes de Chern en théorie bivariante, Thèse, Université Aix-Marseille, Vol. 2, 1995.

  28. J. Zhou: “Morphisme cellulaire et classes de Chern bivariantes”, Ann. Fac. Sci. Toulouse Math., Vol. 9, (2000), pp. 161–192.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially supported by Grant-in-Aid for Scientific Research (C) (No. 15540086+No. 17540088), the Japanese Ministry of Education, Science, Sports and Culture.

About this article

Cite this article

Yokura, S. Bivariant Chern classes for morphisms with nonsingular target varieties. centr.eur.j.math. 3, 614–626 (2005). https://doi.org/10.2478/BF02475622

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/BF02475622

Keywords

MSC (2000)

Navigation