Skip to main content
Log in

Quantum systems with effective and time-dependent masses: form-preserving transformations and reality conditions

  • Published:
Central European Journal of Physics

Abstract

We study the time-dependent Schrödinger equation (TDSE) with an effective (position-dependent) mass, relevant in the context of transport phenomena in semiconductors. The most general form-preserving transformation between two TDSEs with different effective masses is derived. A condition guaranteeing the reality of the potential in the transformed TDSE is obtained. To ensure maximal generality, the mass in the TDSE is allowed to depend on time also.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Gora and F. Williams: “Electronic states of homogeneous and inhomogeneous mixed semiconductors”, In: D.G. Thomas (Ed.):II–VI Semiconducting Compounds, Benjamin, New York, 1967.

    Google Scholar 

  2. T. Gora and F. Williams: “Theory of electronic states and transport in graded mixed semiconductors”, Phys. Rev., Vol. 177, (1969), pp. 1179–1182.

    Article  ADS  Google Scholar 

  3. G.T. Landsberg:Solid state theory: methods and applications, Wiley-Interscience, London, 1969.

    Google Scholar 

  4. O. von Roos: “Position-dependent effective masses in semiconductor theory”, Phys. Rev. B, Vol. 27, (1983), pp. 7547–7552.

    Article  ADS  Google Scholar 

  5. O. von Roos and H. Mavromatis: “Position-dependent effective masses in semiconductor theory. II”, Phys. Rev. B, Vol. 31, (1985), pp. 2294–2298.

    Article  ADS  Google Scholar 

  6. J.-M. Lévy-Leblond: “Position-dependent effective mass and Galilean invariance”, Phys. Rev. A, Vol. 52(3), (1995), pp. 1845–1849.

    Article  MathSciNet  ADS  Google Scholar 

  7. L. Dekar, L. Chetouani and T.F. Hammann: “An exactly soluble Schrödinger equation with smooth position-dependent mass”, J. Math. Phys., Vol. 39, (1998), pp. 2551–2563.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Á. de Souza Dutra and C.A.S. Almeida: “Exact solvability of potentials with spatially dependent effective masses”, Phys. Lett. A, Vol. 275, (2000), pp. 25–30.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. A.D. Alhaidari: “Solutions of the nonrelativistic wave equation with position-dependent effective mass”, Phys. Rev. A, Vol. 66, (2002), pp. 042116.

    Article  ADS  Google Scholar 

  10. B. Gönül, B. Gönül, D. Tutcu and O. Özer: “Supersymmetric approach to exactly solvable systems with position-dependent effective masses”, Modern Phys. Lett. A, Vol. 17, (2002), pp. 2057–2066.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. R. Koç and M. Koca: “A systematic study on the exact solution of the position dependent mass Schrödinger equation”, J. Phys. A, Vol. 36, (2003), pp. 8105–8112.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. J. Yu. Dong, S.-H. Dong and G.-H. Sun: “Series solutions of the Schrödinger equation with position-dependent mass for the Morse potential”, Phys. Lett. A., Vol. 322, (2004), pp. 290–297.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. C. Quesne and V.M. Tkachuk: “Deformed algebras, position-dependent effective masses and curved spaces: an exactly solvable Coulomb problem”, J. Phys. A, Vol. 37, (2004), pp. 4267–4281.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Y.C. Ou, Z. Cao and Q. Shen: “Energy eigenvalues for the systems with position-dependent effective mass”, J. Phys. A, Vol. 37, (2004), pp. 4283–4288.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. G. Chen and Z.-D. Chen: “Exact solutions of the position-dependent Schrödinger equation in D dimensions”, Phys. Lett. A, Vol. 331, (2004), pp. 312–315.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. A. Jannussis, G. Karayannis, P. Panagopoulos, V. Papatheou, M. Symeonidis, D. Vavougios, P. Siafarikas and V. Zisis: “Exactly soluble harmonic oscillator for a particular form of time and coordinates-dependent mass”, J. Phys. Soc. Japan, Vol. 53, (1984), pp. 957–962.

    Article  MathSciNet  ADS  Google Scholar 

  17. A. Schulze-Halberg: “Form-preserving transformations of the time-dependent Schrödinger equation with time- and position-dependent mass”, Commun. Theor. Phys. (Beijing), Vol. 43, (2005), pp. 657–665.

    Article  MathSciNet  Google Scholar 

  18. F. Finkel, A. Gonzalez-Lopez, N. Kamran and M.A. Rodriguez: “On form-preserving transformations for the time-dependent Schrodinger equation”, J. Math. Phys., Vol. 40, (1999), pp. 3268–3274.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. M. Znojil (Ed.): “Proceedings of the 1st international workshop: pseudo-hermitian Hamiltonians in quantum physics”, Czech. J. Phys., Vol. 54, (2004), pp. 1–156.

  20. Á.de Souza Dutra, M.B. Hott and V.G.C.S. dos Santos: “Non-Hermitian time-dependent quantum systems with real energies”, quant-ph/0311044.

  21. G.T. Einevoll and P.C. Hemmer: “The effective-mass Hamiltonian for abrupt heterostructures”, J. Phys. C, Vol. 21, (1988), pp. L1193-L1198.

    Article  ADS  Google Scholar 

  22. G.T. Einevoll, P.C. Hemmer and J. Thomsen: “Operator ordering in effectivemass theory for heterostructures. I. Comparison with exact results for superlattices, quantum wells, and localized potentials”, Phys. Rev. B, Vol. 42, (1990), pp. 3485–3496.

    Article  ADS  Google Scholar 

  23. G.T. Einevoll: “Operator ordering in effective-mass theory for heterostructures. II. Strained systems”, Phys. Rev. B, Vol. 42, (1990), pp. 3497–3502.

    Article  ADS  Google Scholar 

  24. R.A. Morrow and K.R. Brownstein: “Model effective-mass Hamiltonians for abrupt heterojunctions and the associated wave-function-matching conditions”, Phys. Rev. B, Vol. 30, (1984), pp. 678–680.

    Article  ADS  Google Scholar 

  25. R.A. Morrow: “Establishment of an effective-mass Hamiltonian for abrupt heterojunctions”, Phys. Rev. B, Vol. 35, (1987), pp. 8074–8079.

    Article  ADS  Google Scholar 

  26. J. Thomsen, G.T. Einevoll and P.C. Hemmer: “Operator ordering in effective-mass theory”, Phys. Rev. B, Vol. 39, (1989), pp. 12783–12788.

    Article  ADS  Google Scholar 

  27. Q.-G. Zhu and H. Kroemer: “Interface connection rules for effective-mass wave functions at an abrupt heterojunction between two different semiconductors”, Phys. Rev. B, Vol. 27, (1983), pp. 3519–3527.

    Article  ADS  Google Scholar 

  28. K.C. Yung and J.H. Yee: “Derivation of the modified Schrödinger equation for a particle with a spatially varying mass through path integrals”, Phys. Rev. A, Vol. 50, (1994), pp. 104–106.

    Article  ADS  Google Scholar 

  29. E. Kamke:Differentialgleichungen—Lösungsmethoden und Lösungen, B.G. Teubner, Stuttgart, 1983.

    Google Scholar 

  30. L. Dekar, L. Chetouani and T.F. Hammann: “Wave function for smooth potential and mass step”, Phys. Rev. A, Vol. 59, (1999), pp. 107–112.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Schulze-Halberg, A. Quantum systems with effective and time-dependent masses: form-preserving transformations and reality conditions. centr.eur.j.phys. 3, 591–609 (2005). https://doi.org/10.2478/BF02475615

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/BF02475615

Keywords

Navigation