Skip to main content
Log in

Crystal field analysis of the ground and excited state absorption of a Cr4+ ion in LiAlO2 and LiGaO2 crystals

  • Published:
Central European Journal of Physics

Abstract

The exchange charge model of crystal field theory has been used to analyze the ground and excited state absorption of tetrahedrally coordinated Cr4+ ion in lithium aluminum oxide LiAlO2 (γ-phase) and lithium dioxogallate LiGaO2. The parameters of the crystal field acting on the Cr4+ ion are calculated from the crystal structure data, taking into account the crystal lattice ions located at distances up to 12.744 Å in LiGaO2 and 13. 180 Å in LiAlO2. The obtained energy level schemes were compared with experimental ground and excited state absorption spectra and literature data on the application of other crystal field models (the angular overlap model and Racah theory) to the considered crystals; a good agreement with experimental data is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Petricevic, S.K. Gayen and R.R. Alfano: “Laser action in chromium-activated forsterite for near-infrared excitation: Is Cr4+ the lasing ion?”, Applied Physics Letters, Vol. 53, (1988), pp. 2590–2592.

    Article  ADS  Google Scholar 

  2. H.R. Verdun, L.M. Thomas, D.M. Andrauskas, T. McCollum and A. Pinto: “Chromium-doped forsterite laser pumped with 1.06 μm radiation”, Applied Physics Letters, Vol. 53, (1988), pp. 2593–2595.

    Article  ADS  Google Scholar 

  3. V. Petricevic, S.K. Gayen, R.R. Alfano, K. Yamagishi, H. Anzai and Y. Yamaguchi: “Laser action in chromium-doped forsterite”, Applied Physics Letters, Vol. 52, (1988), pp. 1040–1042.

    Article  ADS  Google Scholar 

  4. N.B. Angert, N.I. Borodin, V.M. Garmash, V.A. Zhitnyuk, A.G. Okhrimchuk, O.G. Siyuchenko and A.V. Shestakov: “The laser action in impurity color-centers in uttrium-aluminum garnet crystals in the wavelength range of 1.35–1.45 μm”, Soviet Journal of Quantum Electronics, Vol. 15, (1988), pp. 113–115.

    ADS  Google Scholar 

  5. N.I. Borodin, V.A. Zhitnyuk, A.G. Okhrimchuk and A.V. Shestakov: “Y3Al5O12: Cr4+ laser action at 1.34 μ mto 1.6μm”, Izvestiya Akademii Nauk SSSR, Seriya Fizicheskaya, Vol. 54, (1990), pp. 1500–1506.

    Google Scholar 

  6. S. Kück, K. Petermann, U. Pohlmann, U. Schönhoff and G. Huber: ”Tunable room-temperature laser action of Cr4+-doped Y3Sc x Al5−x O12”, Applied Physics B, Vol. 58, (1994), pp. 153–156.

    Article  Google Scholar 

  7. J. Koetke, S. Kück, K. Petermann, G. Huber, G. Gerullo, M. Danailov, V. Magni, L.F. Qian and O. Svelto. “Quasi-continuous wave laser operation of Cr4+-doped Y2SiO5 at room-temperature”, Optics Communications, Vol. 101, (1993), pp. 195–198.

    Article  ADS  Google Scholar 

  8. J.M. Evans, V. Petricevic, A.B. Bykov, A.Delgado and R.R. Alfano: “Direct diodepumped continuous-wave near-infrared tunable laser operation of Cr4+-forsterite and Cr4+-Ca2GeO4”, Optics Letters, Vol. 22, (1997), pp. 1171–1173.

    ADS  Google Scholar 

  9. S. Kück and S. Hartung: “Comparative study of the spectroscopic properties of Cr4+-doped LiAlO2 and LiGaO2”, Chemical Physics, Vol. 240, (1999), pp. 387–401.

    Article  Google Scholar 

  10. C.K. Jorgensen:Absorption spectra and chemical bonding in complexes, Pergamon Press, London, New York, Paris, 1962.

    Google Scholar 

  11. C.K. Jorgensen, R. Pappalardo and H.H. Schmidtke: “Do the “ligand field” parameters in lanthanides represent weak covalent bonding?”, Journal of Chemical Physics, Vol. 39, (1963), pp. 1422–1430.

    Article  ADS  Google Scholar 

  12. T. Schönherr: “Angular overlap model applied to transition metal complexes and dN-ions in oxide host lattices”, Topics in Current Chemistry, Vol. 191, (1997), pp. 87–152.

    Article  Google Scholar 

  13. S. Kammoun: “Crystal-field splitting of the Cr4+ terms in LiAlO2 oxide crystal”, Journal of Luminescence, Vol. 106, (2004), pp. 205–210.

    Article  Google Scholar 

  14. S. Kammoun and M. Kamoun: “Crystal-field analysis of the Cr4+ absorption and excitation spectrum in LiGaO2 oxide crystal”, European Physical Journal Applied Physics, Vol. 24, (2003), pp. 209–213.

    Article  ADS  Google Scholar 

  15. B.Z. Malkin: “Crystal field and electron-phonon interaction in rare-earth ionic paramagnets”, In: A.A. Kaplyanskii, B.M. Macfarlane (Eds.):Spectroscopy of solids containing rare-earth ions, North-Holland, Amsterdam 1987, pp. 33–50.

    Google Scholar 

  16. M.G. Brik, C.N. Avram and I. Tanaka: “Crystal field analysis of energy levels structure of LiAlO2:Cr4+ and LiGaO2:Cr4+”, Physica Status Solidi B, Vol. 241, (2004), pp. 2501–2507.

    Article  ADS  Google Scholar 

  17. D. Reinen, U. Kesper, M. Atanasov and J. Roos: “Cr4+ in tetrahedral coordination of oxidic solids—a spectroscopic and structural investigation”, Inorganic Chemistry, Vol. 34, (1995), pp. 184–192.

    Article  Google Scholar 

  18. M. Marezio: “Crystal structure and anomalous dispersion of γ-LiAlO2”, Acta Crystallographica, Vol. 19, (1965), pp. 396–400.

    Article  Google Scholar 

  19. M. Marezio: “The crystal structure of LiGaO2”, Acta Crystallographica, Vol. 18, (1965), pp. 481–484.

    Article  Google Scholar 

  20. M. Marezio and J.P. Remeika: “Polymorphism of LiMO2 compounds and high-pressure single-crystal synthesis of LiBO2”, Journal of Chemical Physics, Vol. 44, (1966), pp. 3348–3353.

    Article  ADS  Google Scholar 

  21. S. Sugano, Y. Tanabe and H. Kamimura:Multiplets of Transition-Metal Ions in Crystals, Academic Press, New York and London, 1970.

    Google Scholar 

  22. A.G. Abragam and B. Bleaney:Electron Paramagnetic Resonance of Transition Ions, Oxford: Clarendon, 1970.

    Google Scholar 

  23. G.A. Bogomolova, L.A. Bumagina, A.A. Kaminskii and B.Z. Malkin: “Crystalline field in laser garnets with TR3+ ions in exchange charge model”, Fizika Tverdogo Tela (Soviet Physics of the Solid State), Vol. 19, (1977), pp. 1439–1452.

    Google Scholar 

  24. M.N. Popova, S.A. Klimin, E.P. Chukalina, R.Z. Levitin, B.V. Mill, B.Z. Malkin and E. Antic-Fidancev: “Crystal field and magnetic ordering in the Haldane-chain compound Er2BaNiO5 as studied by optical spectroscopy”, Journal of Alloys and Compounds, Vol. 380, (2004), pp. 84–88.

    Article  Google Scholar 

  25. M.N. Popova, E.P. Chukalina, B.Z. Malkin, A.I. Iskhkova, E. Antic-Fidancev, P. Porcher and J.P. Chaminade: “High-resolution infrared absorption spectra, crystal field levels, and relaxation processes in CsCdBr3:Pr3+”, Physical Review B, Vol. 63, (2001), pp. 075103.

    Article  ADS  Google Scholar 

  26. M.N. Popova, S.A. Klimin, E.P. Chukalina, E.A. Romanov, B.Z. Malkin, E. Antic-Fidancev, B.V. Mill and G. Dhalenne: “High-resolution optical spectroscopy investigation of Nd2BaNiO5 and Nd0.1 Y1.9 BaNiO5 and crystal-field parameters for rare-earth linear-chain nickelates”, Physical Review B, Vol. 71, (2005), pp. 024414.

    Article  ADS  Google Scholar 

  27. M.G. Brik, C.N. Avram and N.M. Avram: “Linear electron-phonon interaction and non-radiative transitions in LiCaAlF6:Cr3+ laser crystals”, In: Martin E. Fermann and Larry R. Marshall (Eds):OSA Trends in Optics and Photonics, Vol. 68, Advanced Solid-State Lasers, Optical Society of America, Washington DC, 2002, pp. 275–279.

    Google Scholar 

  28. C. Jousseaume, D. Vivien, A. Kahn-Harari and B.Z. Malkin: “Long-lifetime fluorescence and crystal field calculation in Cr4+-doped Li2MSiO4, M=Mg, Zn”, Optical Materials, Vol. 24, (2003), pp. 143–150.

    Article  ADS  Google Scholar 

  29. M.G. Brik and N.M. Avram: “Crystal field analysis and electron-phonon coupling in Sc2O3:Cr3+”, Zeitschrift für Naturforschung (A Journal of Physical Sciences), Vol. 59a (2004), pp. 799–803.

    Google Scholar 

  30. M.G. Brik, N.M. Avram and C.N. Avram: “Crystal field analysis of energy level structure of the Cr2O3 antiferromagnet”, Solid State Communications, Vol. 132, (2004), pp. 831–835.

    Article  ADS  Google Scholar 

  31. M.G. Brik, N.M. Avram, C.N. Avram and I. Tanaka: “Effects of the spin-triplet states mixture and electron-phonon coupling in Y3Al5O12:Cr4+”, European Physical Journal Applied Physics, Vol. 29, (2005), pp. 239–245.

    Article  Google Scholar 

  32. S.I. Klokishner, B.S. Tsukerblat, O.S. Reu, A.V. Palii and S.M. Ostrovsky: “Jahn-Teller vibronic coupling in CdSe doped with Cr2+ ions”, Optical Materials, Vol. 27, (2005), pp. 1445–1450.

    Article  ADS  Google Scholar 

  33. M.G. Brik and C.N. Avram: “Comparative analysis of non-radiative relaxation of Cr3+ in LiCaAlF6 and Al2O3 crystals”, Journal of Luminescence, Vol. 102–103, (2003), pp. 283–286.

    Article  Google Scholar 

  34. M.N. Popova, E.P. Chukalina, B.Z. Malkin and S.K. Saikin: “Experimental and theoretical study of the crystal-field levels and hyperfine and electron-phonon interactions in LiYF4:Er3+”, Physical Review B, Vol. 61, (2000), pp. 7421–7427.

    Article  ADS  Google Scholar 

  35. M.J. Riley, E.R. Krausz, N.B. Manson and B. Henderson: “Selectively excited luminescence and magnetic circular dichroism of Cr4+-doped YAG and YGG”, Physical Review B, Vol. 59, (1999), pp. 1850–1856.

    Article  ADS  Google Scholar 

  36. J.S. Griffith: “The Theory of Transition-Metal Ions”, Cambridge University Press, Cambridge, England, 1961.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Brik, M.G., Avram, N.M. & Avram, C.N. Crystal field analysis of the ground and excited state absorption of a Cr4+ ion in LiAlO2 and LiGaO2 crystals. centr.eur.j.phys. 3, 508–524 (2005). https://doi.org/10.2478/BF02475609

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/BF02475609

Keywords

PACS (2003)

Navigation