Central European Journal of Mathematics

, Volume 2, Issue 3, pp 399–419 | Cite as

On the computation of scaling coefficients of Daubechies' wavelets

  • Dana Černá
  • Václav Finěk


In the present paper, Daubechies' wavelets and the computation of their scaling coefficients are briefly reviewed. Then a new method of computation is proposed. This method is based on the work [7] concerning a new orthonormality condition and relations among scaling moments, respectively. For filter lengths up to 16, the arising system can be explicitly solved with algebraic methods like Gröbner bases. Its simple structure allows one to find quickly all possible solutions.


Daubechies' wavelets computation of scaling coefficients 

MSC (2000)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. Han: “Analysis and construction of optimal multivariate biortogonal wavelets with compact support”,SIAM J. Math. Anal., Vol. 31, (2000), pp. 274–304.zbMATHCrossRefGoogle Scholar
  2. [2]
    B. Han: “Approximation properties and construction of Hermite interpolants and biorthogonal multiwavelets”,J. Approx. Theory,Vol. 110, (2001),pp. 18–53.zbMATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    B. Han: “Symmetric multivariate orthogonal refinable functions”,Appl. Comput. Harmon. Anal., to appear.Google Scholar
  4. [4]
    A. Cohen and R.D. Ryan:Wavelets and Multiscale Signal Processing, Chapman & Hall, London, 1995.zbMATHGoogle Scholar
  5. [5]
    A. Cohen: “Wavelet methods in numerical analysis”, In: P.G. Ciarlet et al. (Eds.):Handbook of numerical analysis, Vol. VII, Amsterdam: North-Holland/Elsevier, 2000, pp. 417–711.Google Scholar
  6. [6]
    I. Daubechies:Ten Lectures on Wavelets. Society for industrial and applied mathematics, Philadelphia, 1992.Google Scholar
  7. [7]
    V. Finěk:Approximation properties of wavelets and relations among scaling moments II, Preprint, TU Dresden, 2003.Google Scholar
  8. [8]
    W. Lawton: “Necessary and sufficient conditions for constructing orthonormal wavelet bases”,J. Math. Phys., Vol. 32, (1991), pp. 57–61.zbMATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    A.K. Louis, P. Maass and A. Rieder:Wavelets: Theorie und Anwendungen, B.G. Teubner, Stuttgart, 1994.Google Scholar
  10. [10]
    G. Polya and G. Szegö:Aufgaben und Lehrsätze aus der Analysis, Vol. II, Springer-Verlag, Berlin, 1971.Google Scholar
  11. [11]
    W.C. Shann and C.C. Yen: “On the exampleact values of the orthogonal scaling coefficients of lenghts 8 and 10”,Appl. Comput. Harmon. Anal., Vol. 6, (1999), pp 109–112.zbMATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    G. Strang and T. Nguyen:Wavelets and Filter Banks, Wellesley-Cambridge Press, 1996.Google Scholar
  13. [13]
    P. Wojtaszczyk:A Mathematical introduction to wavelets, Cambridge University Press, 1997.Google Scholar

Copyright information

© Central European Science Journals 2004

Authors and Affiliations

  • Dana Černá
    • 1
  • Václav Finěk
    • 2
  1. 1.Institute of Mathematics and Didactics of MathematicsTechnical University of LiberecLiberecCzech Republic
  2. 2.Institute of Numerical MathematicsDresden University of TechnologyDresdenGermany

Personalised recommendations