Translational Neuroscience

, Volume 1, Issue 4, pp 308–321 | Cite as

Treatment strategies for spinal muscular atrophy

  • Heidi R. Fuller
  • Marija Barišić
  • Đurđica Šešo-Šimić
  • Tea Špeljko
  • Glenn E. Morris
  • Goran Šimić
Article
  • 71 Downloads

Abstract

Progress in understanding the genetic basis and pathophysiology of spinal muscular atrophy (SMA), along with continuous efforts in finding a way to increase survival motor neuron (SMN) protein levels have resulted in several strategies that have been proposed as potential directions for efficient drug development. Here we provide an overview on the current status of the following approaches: 1) activation of SMN2 gene and increasing full length SMN2 transcript level, 2) modulating SMN2 splicing, 3) stabilizing SMN mRNA and SMN protein, 4) development of neurotrophic, neuroprotective and anabolic compounds and 5) stem cell and gene therapy. The new preclinical advances warrant a cautious optimism for emergence of an effective treatment in the very near future.

Keywords

Clinical trials Spinal muscular atrophy SMN1 gene SMN2 gene SMN protein Treatment Therapy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Botta A., Tacconelli A., Bagni I., Giardina E., Bonifazi E., Pietropolli A., et al., Transmission ratio distortion in the spinal muscular atrophy locus: data from 314 prenatal tests, Neurology, 2005, 65, 1631–1635PubMedCrossRefGoogle Scholar
  2. [2]
    Bromberg M. B., Swoboda K. J., Motor unit number estimation in infants and children with spinal muscular atrophy, Muscle Nerve, 2002, 25, 445–447PubMedCrossRefGoogle Scholar
  3. [3]
    Crawford T. O., Pardo C. A., The neurobiology of childhood spinal muscular atrophy, Neurobiol Dis, 1996, 3, 97–110PubMedCrossRefGoogle Scholar
  4. [4]
    Dubowitz, Disorders of the lower motor neuron, the spinal muscular atrophy, 1995, in: Dubowitz (ed), Muscle disorders in childhood, Saunders, London, 325–369Google Scholar
  5. [5]
    Greenfield J.C., Stern R.O., The anatomical identity of the Werdnig-Hoffmann and Oppenheim forms of infantile muscular atrophy, Brain, 1927, 50, 652–686CrossRefGoogle Scholar
  6. [6]
    Pearn J., Classification of spinal muscular atrophies, Lancet, 1980, 1, 919–922PubMedCrossRefGoogle Scholar
  7. [7]
    Simic G., Pathogenesis of proximal autosomal recessive spinal muscular atrophy, Acta Neuropathol, 2008, 116, 223–234PubMedCrossRefGoogle Scholar
  8. [8]
    Zerres K., Rudnik-Schoneborn S., Natural history in proximal spinal muscular atrophy. Clinical analysis of 445 patients and suggestions for a modification of existing classifications, Arch Neurol, 1995, 52, 518–523PubMedGoogle Scholar
  9. [9]
    Wharton S., Ince P.G., Pathology of motor neuron disorders, 2003. In: Shaw P.J., Strong M.J. (eds) Motor neuron disorders. Blue books of practical neurology, book 28. Butterworth-Heineman, Elsevier Science, Philadelphia, pp 17–49Google Scholar
  10. [10]
    Burglen L., Lefebvre S., Clermont O., Burlet P., Viollet L., Cruaud C., et al., Structure and organization of the human survival motor neurone (SMN) gene, Genomics, 1996, 32, 479–482PubMedCrossRefGoogle Scholar
  11. [11]
    Parsons D. W., McAndrew P. E., Iannaccone S. T., Mendell J. R., Burghes A. H., Prior T. W., Intragenic telSMN mutations: frequency, distribution, evidence of a founder effect, and modification of the spinal muscular atrophy phenotype by cenSMN copy number, Am J Hum Genet, 1998, 63, 1712–1723PubMedCrossRefGoogle Scholar
  12. [12]
    Brahe C., Bertini E., Spinal muscular atrophies: recent insights and impact on molecular diagnosis, J Mol Med, 1996, 74, 555–562PubMedCrossRefGoogle Scholar
  13. [13]
    DiMatteo D., Callahan S., Kmiec E. B., Genetic conversion of an SMN2 gene to SMN1: a novel approach to the treatment of spinal muscular atrophy, Exp Cell Res, 2008, 314, 878–886PubMedCrossRefGoogle Scholar
  14. [14]
    Monani U. R., Lorson C. L., Parsons D. W., Prior T. W., Androphy E. J., Burghes A. H., et al., A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2, Hum Mol Genet, 1999, 8, 1177–1183PubMedCrossRefGoogle Scholar
  15. [15]
    Brahe C., Copies of the survival motor neuron gene in spinal muscular atrophy: the more, the better, Neuromuscul Disord, 2000, 10, 274–275PubMedCrossRefGoogle Scholar
  16. [16]
    Feldkotter M., Schwarzer V., Wirth R., Wienker T. F., Wirth B., Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy, Am J Hum Genet, 2002, 70, 358–368PubMedCrossRefGoogle Scholar
  17. [17]
    Mailman M. D., Heinz J. W., Papp A. C., Snyder P. J., Sedra M. S., Wirth B., et al., Molecular analysis of spinal muscular atrophy and modification of the phenotype by SMN2, Genet Med, 2002, 4, 20–26PubMedCrossRefGoogle Scholar
  18. [18]
    McAndrew P. E., Parsons D. W., Simard L. R., Rochette C., Ray P. N., Mendell J. R., et al., Identification of proximal spinal muscular atrophy carriers and patients by analysis of SMNT and SMNC gene copy number, Am J Hum Genet, 1997, 60, 1411–1422PubMedCrossRefGoogle Scholar
  19. [19]
    Wirth B., Brichta L., Schrank B., Lochmuller H., Blick S., Baasner A., et al., Mildly affected patients with spinal muscular atrophy are partially protected by an increased SMN2 copy number, Hum Genet, 2006, 119, 422–428PubMedCrossRefGoogle Scholar
  20. [20]
    Sumner C. J., Therapeutics development for spinal muscular atrophy, NeuroRx, 2006, 3, 235–245PubMedCrossRefGoogle Scholar
  21. [21]
    Oskoui M., Kaufmann P., Spinal muscular atrophy, Neurotherapeutics, 2008, 5, 499–506PubMedCrossRefGoogle Scholar
  22. [22]
    Oskoui M., Levy G., Garland C. J., Gray J. M., O’Hagen J., De Vivo D. C., et al., The changing natural history of spinal muscular atrophy type 1, Neurology, 2007, 69, 1931–1936PubMedCrossRefGoogle Scholar
  23. [23]
    Wang C. H., Finkel R. S., Bertini E. S., Schroth M., Simonds A., Wong B., et al., Consensus statement for standard of care in spinal muscular atrophy, J Child Neurol, 2007, 22, 1027–1049PubMedCrossRefGoogle Scholar
  24. [24]
    Echaniz-Laguna A., Miniou P., Bartholdi D., Melki J., The promoters of the survival motor neuron gene (SMN) and its copy (SMNc) share common regulatory elements, Am J Hum Genet, 1999, 64, 1365–1370PubMedCrossRefGoogle Scholar
  25. [25]
    Baron-Delage S., Abadie A., Echaniz-Laguna A., Melki J., Beretta L., Interferons and IRF-1 induce expression of the survival motor neuron (SMN) genes, Mol Med, 2000, 6, 957–968PubMedGoogle Scholar
  26. [26]
    Rouget R., Vigneault F., Codio C., Rochette C., Paradis I., Drouin R., et al., Characterization of the survival motor neuron (SMN) promoter provides evidence for complex combinatorial regulation in undifferentiated and differentiated P19 cells, Biochem J, 2005, 385, 433–443PubMedCrossRefGoogle Scholar
  27. [27]
    Kernochan L. E., Russo M. L., Woodling N. S., Huynh T. N., Avila A. M., Fischbeck K. H., et al., The role of histone acetylation in SMN gene expression, Hum Mol Genet, 2005, 14, 1171–1182PubMedCrossRefGoogle Scholar
  28. [28]
    Lunke S., El-Osta A., The emerging role of epigenetic modifications and chromatin remodeling in spinal muscular atrophy, J Neurochem, 2009, 109, 1557–1569PubMedCrossRefGoogle Scholar
  29. [29]
    Chang J. G., Hsieh-Li H. M., Jong Y. J., Wang N. M., Tsai C. H., Li H., Treatment of spinal muscular atrophy by sodium butyrate, Proc Natl Acad Sci U S A, 2001, 98, 9808–9813PubMedCrossRefGoogle Scholar
  30. [30]
    Miller A. A., Kurschel E., Osieka R., Schmidt C. G., Clinical pharmacology of sodium butyrate in patients with acute leukemia, Eur J Cancer Clin Oncol, 1987, 23, 1283–1287PubMedCrossRefGoogle Scholar
  31. [31]
    Andreassi C., Angelozzi C., Tiziano F. D., Vitali T., De Vincenzi E., Boninsegna A., et al., Phenylbutyrate increases SMN expression in vitro: relevance for treatment of spinal muscular atrophy, Eur J Hum Genet, 2004, 12, 59–65PubMedCrossRefGoogle Scholar
  32. [32]
    Brahe C., Vitali T., Tiziano F. D., Angelozzi C., Pinto A. M., Borgo F., et al., Phenylbutyrate increases SMN gene expression in spinal muscular atrophy patients, Eur J Hum Genet, 2005, 13, 256–259PubMedCrossRefGoogle Scholar
  33. [33]
    Mercuri E., Bertini E., Messina S., Pelliccioni M., D’Amico A., Colitto F., et al., Pilot trial of phenylbutyrate in spinal muscular atrophy, Neuromuscul Disord, 2004, 14, 130–135PubMedCrossRefGoogle Scholar
  34. [34]
    Mercuri E., Bertini E., Messina S., Solari A., D’Amico A., Angelozzi C., et al., Randomized, double-blind, placebo-controlled trial of phenylbutyrate in spinal muscular atrophy, Neurology, 2007, 68, 51–55PubMedCrossRefGoogle Scholar
  35. [35]
    Kaufmann P., Muntoni F., Issues in SMA clinical trial design. The International Coordinating Committee (ICC) for SMA Subcommittee on SMA Clinical Trial Design, Neuromuscul Disord, 2007, 17, 499–505PubMedCrossRefGoogle Scholar
  36. [36]
  37. [37]
    Grzeschik S. M., Ganta M., Prior T. W., Heavlin W. D., Wang C. H., Hydroxyurea enhances SMN2 gene expression in spinal muscular atrophy cells, Ann Neurol, 2005, 58, 194–202PubMedCrossRefGoogle Scholar
  38. [38]
    Liang W. C., Yuo C. Y., Chang J. G., Chen Y. C., Chang Y. F., Wang H. Y., et al., The effect of hydroxyurea in spinal muscular atrophy cells and patients, J Neurol Sci, 2008, 268, 87–94PubMedCrossRefGoogle Scholar
  39. [39]
    Chang J.G., Tsai F.J., Wang W.Y., Jong Y.J., Treatment of spinal muscular atrophy by hydroxyurea, American Journal of Human Genetics, 2002, 7,issue 4:2402 suppl.Google Scholar
  40. [40]
    Terbach N., Williams R. S., Structure-function studies for the panacea, valproic acid, Biochem Soc Trans, 2009, 37, 1126–1132PubMedCrossRefGoogle Scholar
  41. [41]
    Brichta L., Hofmann Y., Hahnen E., Siebzehnrubl F. A., Raschke H., Blumcke I., et al., Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy, Hum Mol Genet, 2003, 12, 2481–2489PubMedCrossRefGoogle Scholar
  42. [42]
    Sumner C. J., Huynh T. N., Markowitz J. A., Perhac J. S., Hill B., Coovert D. D., et al., Valproic acid increases SMN levels in spinal muscular atrophy patient cells, Ann Neurol, 2003, 54, 647–654PubMedCrossRefGoogle Scholar
  43. [43]
    Brichta L., Holker I., Haug K., Klockgether T., Wirth B., In vivo activation of SMN in spinal muscular atrophy carriers and patients treated with valproate, Ann Neurol, 2006, 59, 970–975PubMedCrossRefGoogle Scholar
  44. [44]
    Weihl C. C., Connolly A. M., Pestronk A., Valproate may improve strength and function in patients with type III/IV spinal muscle atrophy, Neurology, 2006, 67, 500–501PubMedCrossRefGoogle Scholar
  45. [45]
    Wirth B., Brichta L., Hahnen E., Spinal muscular atrophy and therapeutic prospects, Prog Mol Subcell Biol, 2006, 44, 109–132PubMedCrossRefGoogle Scholar
  46. [46]
    Wirth B., Brichta L., Hahnen E., Spinal muscular atrophy: from gene to therapy, Semin Pediatr Neurol, 2006, 13, 121–131PubMedCrossRefGoogle Scholar
  47. [47]
    Piepers S., Cobben J. M., Sodaar P., Jansen M. D., Wadman R. I., Meester-Delver A., et al., Quantification of SMN protein in leucocytes from spinal muscular atrophy patients: effects of treatment with valproic acid, J Neurol Neurosurg Psychiatry, 2010Google Scholar
  48. [48]
    Swoboda K. J., Kissel J. T., Crawford T. O., Bromberg M. B., Acsadi G., D’Anjou G., et al., Perspectives on clinical trials in spinal muscular atrophy, J Child Neurol, 2007, 22, 957–966PubMedCrossRefGoogle Scholar
  49. [49]
    Swoboda K. J., Scott C. B., Reyna S. P., Prior T. W., LaSalle B., Sorenson S. L., et al., Phase II open label study of valproic acid in spinal muscular atrophy, PLoS One, 2009, 4, e5268PubMedCrossRefGoogle Scholar
  50. [50]
    Swoboda K. J., Scott C. B., Crawford T. O., Simard L. R., Reyna S. P., Krosschell K. J., et al., SMA CARNI-VAL trial part I: double-blind, randomized, placebo-controlled trial of L-carnitine and valproic acid in spinal muscular atrophy, PLoS One, 2010, 5, e12140PubMedCrossRefGoogle Scholar
  51. [51]
    Cusco I., Barcelo M. J., Rojas-Garcia R., Illa I., Gamez J., Cervera C., et al., SMN2 copy number predicts acute or chronic spinal muscular atrophy but does not account for intrafamilial variability in siblings, J Neurol, 2006, 253, 21–25PubMedCrossRefGoogle Scholar
  52. [52]
    Hauke J., Riessland M., Lunke S., Eyupoglu I. Y., Blumcke I., El-Osta A., et al., Survival motor neuron gene 2 silencing by DNA methylation correlates with spinal muscular atrophy disease severity and can be bypassed by histone deacetylase inhibition, Hum Mol Genet, 2009, 18, 304–317PubMedCrossRefGoogle Scholar
  53. [53]
    Prior T. W., Krainer A. R., Hua Y., Swoboda K. J., Snyder P. C., Bridgeman S. J., et al., A positive modifier of spinal muscular atrophy in the SMN2 gene, Am J Hum Genet, 2009, 85, 408–413PubMedCrossRefGoogle Scholar
  54. [54]
    Avila A. M., Burnett B. G., Taye A. A., Gabanella F., Knight M. A., Hartenstein P., et al., Trichostatin A increases SMN expression and survival in a mouse model of spinal muscular atrophy, J Clin Invest, 2007, 117, 659–671PubMedCrossRefGoogle Scholar
  55. [55]
    Hahnen E., Eyupoglu I. Y., Brichta L., Haastert K., Trankle C., Siebzehnrubl F. A., et al., In vitro and ex vivo evaluation of secondgeneration histone deacetylase inhibitors for the treatment of spinal muscular atrophy, J Neurochem, 2006, 98, 193–202PubMedCrossRefGoogle Scholar
  56. [56]
    Riessland M., Brichta L., Hahnen E., Wirth B., The benzamide M344, a novel histone deacetylase inhibitor, significantly increases SMN2 RNA/protein levels in spinal muscular atrophy cells, Hum Genet, 2006, 120, 101–110PubMedCrossRefGoogle Scholar
  57. [57]
    Riessland M., Ackermann B., Forster A., Jakubik M., Hauke J., Garbes L., et al., SAHA ameliorates the SMA phenotype in two mouse models for spinal muscular atrophy, Hum Mol Genet, 2010, 19, 1492–1506PubMedCrossRefGoogle Scholar
  58. [58]
    Garbes L., Riessland M., Holker I., Heller R., Hauke J., Trankle C., et al., LBH589 induces up to 10-fold SMN protein levels by several independent mechanisms and is effective even in cells from SMA patients non-responsive to valproate, Hum Mol Genet, 2009, 18, 3645–3658PubMedCrossRefGoogle Scholar
  59. [59]
    Dayangac-Erden D., Bora G., Ayhan P., Kocaefe C., Dalkara S., Yelekci K., et al., Histone deacetylase inhibition activity and molecular docking of (e)-resveratrol: its therapeutic potential in spinal muscular atrophy, Chem Biol Drug Des, 2009, 73, 355–364PubMedCrossRefGoogle Scholar
  60. [60]
    Yuo C. Y., Lin H. H., Chang Y. S., Yang W. K., Chang J. G., 5-(N-ethyl-Nisopropyl)-amiloride enhances SMN2 exon 7 inclusion and protein expression in spinal muscular atrophy cells, Ann Neurol, 2008, 63, 26–34PubMedCrossRefGoogle Scholar
  61. [61]
    Cartegni L., Krainer A. R., Correction of disease-associated exon skipping by synthetic exon-specific activators, Nat Struct Biol, 2003, 10, 120–125PubMedCrossRefGoogle Scholar
  62. [62]
    Lorson C. L., Androphy E. J., An exonic enhancer is required for inclusion of an essential exon in the SMA-determining gene SMN, Hum Mol Genet, 2000, 9, 259–265PubMedCrossRefGoogle Scholar
  63. [63]
    Zhang M. L., Lorson C. L., Androphy E. J., Zhou J., An in vivo reporter system for measuring increased inclusion of exon 7 in SMN2 mRNA: potential therapy of SMA, Gene Ther, 2001, 8, 1532–1538PubMedCrossRefGoogle Scholar
  64. [64]
    Andreassi C., Jarecki J., Zhou J., Coovert D. D., Monani U. R., Chen X., et al., Aclarubicin treatment restores SMN levels to cells derived from type I spinal muscular atrophy patients, Hum Mol Genet, 2001, 10, 2841–2849PubMedCrossRefGoogle Scholar
  65. [65]
    Ramassamy C., Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets, Eur J Pharmacol, 2006, 545, 51–64PubMedCrossRefGoogle Scholar
  66. [66]
    Sakla M. S., Lorson C. L., Induction of full-length survival motor neuron by polyphenol botanical compounds, Hum Genet, 2008, 122, 635–643PubMedCrossRefGoogle Scholar
  67. [67]
    Skommer J., Wlodkowic D., Pelkonen J., Gene-expression profiling during curcumin-induced apoptosis reveals downregulation of CXCR4, Exp Hematol, 2007, 35, 84–95PubMedCrossRefGoogle Scholar
  68. [68]
    Grondard C., Biondi O., Armand A. S., Lecolle S., Della Gaspera B., Pariset C., et al., Regular exercise prolongs survival in a type 2 spinal muscular atrophy model mouse, J Neurosci, 2005, 25, 7615–7622PubMedCrossRefGoogle Scholar
  69. [69]
    Biondi O., Grondard C., Lecolle S., Deforges S., Pariset C., Lopes P., et al., Exercise-induced activation of NMDA receptor promotes motor unit development and survival in a type 2 spinal muscular atrophy model mouse, J Neurosci, 2008, 28, 953–962PubMedCrossRefGoogle Scholar
  70. [70]
    Biondi O., Branchu J., Sanchez G., Lancelin C., Deforges S., Lopes P., et al., In vivo NMDA receptor activation accelerates motor unit maturation, protects spinal motor neurons, and enhances SMN2 gene expression in severe spinal muscular atrophy mice, J Neurosci, 2010, 30, 11288–11299PubMedCrossRefGoogle Scholar
  71. [71]
    Majumder S., Varadharaj S., Ghoshal K., Monani U., Burghes A. H., Jacob S. T., Identification of a novel cyclic AMP-response element (CRE-II) and the role of CREB-1 in the cAMP-induced expression of the survival motor neuron (SMN) gene, J Biol Chem, 2004, 279, 14803–14811PubMedCrossRefGoogle Scholar
  72. [72]
    Skordis L. A., Dunckley M. G., Yue B., Eperon I. C., Muntoni F., Bifunctional antisense oligonucleotides provide a trans-acting splicing enhancer that stimulates SMN2 gene expression in patient fibroblasts, Proc Natl Acad Sci U S A, 2003, 100, 4114–4119PubMedCrossRefGoogle Scholar
  73. [73]
    Singh N. K., Singh N. N., Androphy E. J., Singh R. N., Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron, Mol Cell Biol, 2006, 26, 1333–1346PubMedCrossRefGoogle Scholar
  74. [74]
    Williams J. H., Schray R. C., Patterson C. A., Ayitey S. O., Tallent M. K., Lutz G. J., Oligonucleotide-mediated survival of motor neuron protein expression in CNS improves phenotype in a mouse model of spinal muscular atrophy, J Neurosci, 2009, 29, 7633–7638PubMedCrossRefGoogle Scholar
  75. [75]
    Hua Y., Sahashi K., Hung G., Rigo F., Passini M. A., Bennett C. F., et al., Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model, Genes Dev, 2010, 24, 1634–1644PubMedCrossRefGoogle Scholar
  76. [76]
    Baughan T. D., Dickson A., Osman E. Y., Lorson C. L., Delivery of bifunctional RNAs that target an intronic repressor and increase SMN levels in an animal model of spinal muscular atrophy, Hum Mol Genet, 2009, 18, 1600–1611PubMedCrossRefGoogle Scholar
  77. [77]
    Coady T. H., Lorson C. L., Trans-splicing-mediated improvement in a severe mouse model of spinal muscular atrophy, J Neurosci, 2010, 30, 126–130PubMedCrossRefGoogle Scholar
  78. [78]
    Hastings M. L., Berniac J., Liu Y. H., Abato P., Jodelka F. M., Barthel L., et al., Tetracyclines that promote SMN2 exon 7 splicing as therapeutics for spinal muscular atrophy, Sci Transl Med, 2009, 1, 5ra12PubMedGoogle Scholar
  79. [79]
    Wolstencroft E. C., Mattis V., Bajer A. A., Young P. J., Lorson C. L., A nonsequence-specific requirement for SMN protein activity: the role of aminoglycosides in inducing elevated SMN protein levels, Hum Mol Genet, 2005, 14, 1199–1210PubMedCrossRefGoogle Scholar
  80. [80]
    Mattis V. B., Rai R., Wang J., Chang C. W., Coady T., Lorson C. L., Novel aminoglycosides increase SMN levels in spinal muscular atrophy fibroblasts, Hum Genet, 2006, 120, 589–601PubMedCrossRefGoogle Scholar
  81. [81]
    Mattis V. B., Ebert A. D., Fosso M. Y., Chang C. W., Lorson C. L., Delivery of a read-through inducing compound, TC007, lessens the severity of a spinal muscular atrophy animal model, Hum Mol Genet, 2009, 18, 3906–3913PubMedCrossRefGoogle Scholar
  82. [82]
    Mattis V. B., Ebert A. D., Fosso M. Y., Chang C. W., Lorson C. L., Delivery of a read-through inducing compound, TC007, lessens the severity of a spinal muscular atrophy animal model, Hum Mol Genet, 2009, 18, 3906–3913PubMedCrossRefGoogle Scholar
  83. [83]
    Heier C. R., DiDonato C. J., Translational readthrough by the aminoglycoside geneticin (G418) modulates SMN stability in vitro and improves motor function in SMA mice in vivo, Hum Mol Genet, 2009, 18, 1310–1322PubMedCrossRefGoogle Scholar
  84. [84]
    Butchbach M. E., Singh J., Thorsteinsdottir M., Saieva L., Slominski E., Thurmond J., et al., Effects of 2,4-diaminoquinazoline derivatives on SMN expression and phenotype in a mouse model for spinal muscular atrophy, Hum Mol Genet, 2010, 19, 454–467PubMedCrossRefGoogle Scholar
  85. [85]
    Lunn M. R., Root D. E., Martino A. M., Flaherty S. P., Kelley B. P., Coovert D. D., et al., Indoprofen upregulates the survival motor neuron protein through a cyclooxygenase-independent mechanism, Chem Biol, 2004, 11, 1489–1493PubMedCrossRefGoogle Scholar
  86. [86]
    Burnett B. G., Munoz E., Tandon A., Kwon D. Y., Sumner C. J., Fischbeck K. H., Regulation of SMN protein stability, Mol Cell Biol, 2009, 29, 1107–1115PubMedCrossRefGoogle Scholar
  87. [87]
    Chang H. C., Hung W. C., Chuang Y. J., Jong Y. J., Degradation of survival motor neuron (SMN) protein is mediated via the ubiquitin/proteasome pathway, Neurochem Int, 2004, 45, 1107–1112PubMedCrossRefGoogle Scholar
  88. [88]
    Thoenen H., Hughes R. A., Sendtner M., Trophic support of motoneurons: physiological, pathophysiological, and therapeutic implications, Exp Neurol, 1993, 124, 47–55PubMedCrossRefGoogle Scholar
  89. [89]
    Bryson H. M., Fulton B., Benfield P., Riluzole. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in amyotrophic lateral sclerosis, Drugs, 1996, 52, 549–563PubMedCrossRefGoogle Scholar
  90. [90]
    Merlini L., Solari A., Vita G., Bertini E., Minetti C., Mongini T., et al., Role of gabapentin in spinal muscular atrophy: results of a multicenter, randomized Italian study, J Child Neurol, 2003, 18, 537–541PubMedCrossRefGoogle Scholar
  91. [91]
    Haddad H., Cifuentes-Diaz C., Miroglio A., Roblot N., Joshi V., Melki J., Riluzole attenuates spinal muscular atrophy disease progression in a mouse model, Muscle Nerve, 2003, 28, 432–437PubMedCrossRefGoogle Scholar
  92. [92]
    Russman B. S., Iannaccone S. T., Samaha F. J., A phase 1 trial of riluzole in spinal muscular atrophy, Arch Neurol, 2003, 60, 1601–1603PubMedCrossRefGoogle Scholar
  93. [93]
    Bach J. R., The use of mechanical ventilation is appropriate in children with genetically proven spinal muscular atrophy type 1: the motion for, Paediatr Respir Rev, 2008, 9, 45–50; quiz 50; discussion 55–46PubMedCrossRefGoogle Scholar
  94. [94]
    Bosboom W. M., Vrancken A. F., van den Berg L. H., Wokke J. H., Iannaccone S. T., Drug treatment for spinal muscular atrophy type I, Cochrane Database Syst Rev, 2009, CD006281Google Scholar
  95. [95]
    Ryan M. M., The use of invasive ventilation is appropriate in children with genetically proven spinal muscular atrophy type 1: the motion against, Paediatr Respir Rev, 2008, 9, 51–54; discussion 55–56PubMedCrossRefGoogle Scholar
  96. [96]
    Bessman S. P., Geiger P. J., Transport of energy in muscle: the phosphorylcreatine shuttle, Science, 1981, 211, 448–452PubMedCrossRefGoogle Scholar
  97. [97]
    Ellis A. C., Rosenfeld J., The role of creatine in the management of amyotrophic lateral sclerosis and other neurodegenerative disorders, CNS Drugs, 2004, 18, 967–980PubMedCrossRefGoogle Scholar
  98. [98]
    Tarnopolsky M., Martin J., Creatine monohydrate increases strength in patients with neuromuscular disease, Neurology, 1999, 52, 854–857PubMedGoogle Scholar
  99. [99]
    Wong B., Hynan L.S., Iannaccone S.T., AmSMART Group, A randomized, placebo-controlled trial of creatine in children with spinal muscular atrophy, J Clin Neuromuscul Dis, 2007, 8, 101–110CrossRefGoogle Scholar
  100. [100]
    Greensmith L., Vrbova G., Possible strategies for treatment of SMA patients: a neurobiologist’s view, Neuromuscul Disord, 1995, 5, 359–369PubMedCrossRefGoogle Scholar
  101. [101]
    Taylor J. E., Thomas N. H., Lewis C. M., Abbs S. J., Rodrigues N. R., Davies K. E., et al., Correlation of SMNt and SMNc gene copy number with age of onset and survival in spinal muscular atrophy, Eur J Hum Genet, 1998, 6, 467–474PubMedCrossRefGoogle Scholar
  102. [102]
    Miller R. G., Moore D. H., Dronsky V., Bradley W., Barohn R., Bryan W., et al., A placebo-controlled trial of gabapentin in spinal muscular atrophy, J Neurol Sci, 2001, 191, 127–131PubMedCrossRefGoogle Scholar
  103. [103]
    Bresolin N., Freddo L., Tegazzin V., Bet L., Armani M., Angelini C., Carnitine and acyltransferase in experimental neurogenic atrophies: changes with treatment, J Neurol, 1984, 231, 170–175PubMedCrossRefGoogle Scholar
  104. [104]
    Bigini P., Larini S., Pasquali C., Muzio V., Mennini T., Acetyl-L-carnitine shows neuroprotective and neurotrophic activity in primary culture of rat embryo motoneurons, Neurosci Lett, 2002, 329, 334–338PubMedCrossRefGoogle Scholar
  105. [105]
    Oppenheim R. W., Wiese S., Prevette D., Armanini M., Wang S., Houenou L. J., et al., Cardiotrophin-1, a muscle-derived cytokine, is required for the survival of subpopulations of developing motoneurons, J Neurosci, 2001, 21, 1283–1291PubMedGoogle Scholar
  106. [106]
    Lesbordes J. C., Cifuentes-Diaz C., Miroglio A., Joshi V., Bordet T., Kahn A., et al., Therapeutic benefits of cardiotrophin-1 gene transfer in a mouse model of spinal muscular atrophy, Hum Mol Genet, 2003, 12, 1233–1239PubMedCrossRefGoogle Scholar
  107. [107]
    Takeuchi Y., Miyanomae Y., Komatsu H., Oomizono Y., Nishimura A., Okano S., et al., Efficacy of thyrotropin-releasing hormone in the treatment of spinal muscular atrophy, J Child Neurol, 1994, 9, 287–289PubMedCrossRefGoogle Scholar
  108. [108]
    Tzeng A. C., Cheng J., Fryczynski H., Niranjan V., Stitik T., Sial A., et al., A study of thyrotropin-releasing hormone for the treatment of spinal muscular atrophy: a preliminary report, Am J Phys Med Rehabil, 2000, 79, 435–440PubMedCrossRefGoogle Scholar
  109. [109]
    Bosboom W. M., Vrancken A. F., van den Berg L. H., Wokke J. H., Iannaccone S. T., Drug treatment for spinal muscular atrophy types II and III, Cochrane Database Syst Rev, 2009, CD006282Google Scholar
  110. [110]
    Kato Z., Okuda M., Okumura Y., Arai T., Teramoto T., Nishimura M., et al., Oral administration of the thyrotropin-releasing hormone (TRH) analogue, taltireline hydrate, in spinal muscular atrophy, J Child Neurol, 2009, 24, 1010–1012PubMedCrossRefGoogle Scholar
  111. [111]
    Caruso J. F., Signorile J. F., Perry A. C., Leblanc B., Williams R., Clark M., et al., The effects of albuterol and isokinetic exercise on the quadriceps muscle group, Med Sci Sports Exerc, 1995, 27, 1471–1476PubMedGoogle Scholar
  112. [112]
    Kindermann W., Do inhaled beta(2)-agonists have an ergogenic potential in non-asthmatic competitive athletes?, Sports Med, 2007, 37, 95–102PubMedCrossRefGoogle Scholar
  113. [113]
    Martineau L., Horan M. A., Rothwell N. J., Little R. A., Salbutamol, a beta 2-adrenoceptor agonist, increases skeletal muscle strength in young men, Clin Sci (Lond), 1992, 83, 615–621Google Scholar
  114. [114]
    Angelozzi C., Borgo F., Tiziano F. D., Martella A., Neri G., Brahe C., Salbutamol increases SMN mRNA and protein levels in spinal muscular atrophy cells, J Med Genet, 2008, 45, 29–31PubMedCrossRefGoogle Scholar
  115. [115]
    Kinali M., Mercuri E., Main M., De Biasia F., Karatza A., Higgins R., et al., Pilot trial of albuterol in spinal muscular atrophy, Neurology, 2002, 59, 609–610PubMedGoogle Scholar
  116. [116]
    Pane M., Staccioli S., Messina S., D’Amico A., Pelliccioni M., Mazzone E. S., et al., Daily salbutamol in young patients with SMA type II, Neuromuscul Disord, 2008, 18, 536–540PubMedCrossRefGoogle Scholar
  117. [117]
    Tiziano F. D., Lomastro R., Pinto A. M., Messina S., D’Amico A., Fiori S., et al., Salbutamol increases survival motor neuron (SMN) transcript levels in leucocytes of spinal muscular atrophy (SMA) patients: relevance for clinical trial design, J Med Genet, 2010, 47, 856–858PubMedCrossRefGoogle Scholar
  118. [118]
    Franz D.N., Tudor C.A., Samaha F.J., A phase I trial of recombinant human ciliary neurotrophic factor in spinal muscular atrophy, Ann Neurol, 1995, 38, 546Google Scholar
  119. [119]
    Lee S. J., Quadrupling muscle mass in mice by targeting TGF-beta signaling pathways, PLoS One, 2007, 2, e789PubMedCrossRefGoogle Scholar
  120. [120]
    Rose F. F., Jr., Mattis V. B., Rindt H., Lorson C. L., Delivery of recombinant follistatin lessens disease severity in a mouse model of spinal muscular atrophy, Hum Mol Genet, 2009, 18, 997–1005PubMedCrossRefGoogle Scholar
  121. [121]
    Sumner C. J., Wee C. D., Warsing L. C., Choe D. W., Ng A. S., Lutz C., et al., Inhibition of myostatin does not ameliorate disease features of severe spinal muscular atrophy mice, Hum Mol Genet, 2009, 18, 3145–3152PubMedCrossRefGoogle Scholar
  122. [122]
    Stavarachi M., Apostol P., Toma M., Cimponeriu D., Gavrila L., Spinal muscular atrophy disease: a literature review for therapeutic strategies, J Med Life, 2010, 3, 3–9PubMedGoogle Scholar
  123. [123]
    Gao J., Coggeshall R. E., Chung J. M., Wang J., Wu P., Functional motoneurons develop from human neural stem cell transplants in adult rats, Neuroreport, 2007, 18, 565–569PubMedCrossRefGoogle Scholar
  124. [124]
    Wichterle H., Lieberam I., Porter J. A., Jessell T. M., Directed differentiation of embryonic stem cells into motor neurons, Cell, 2002, 110, 385–397PubMedCrossRefGoogle Scholar
  125. [125]
    Deshpande D. M., Kim Y. S., Martinez T., Carmen J., Dike S., Shats I., et al., Recovery from paralysis in adult rats using embryonic stem cells, Ann Neurol, 2006, 60, 32–44PubMedCrossRefGoogle Scholar
  126. [126]
    Harper J. M., Krishnan C., Darman J. S., Deshpande D. M., Peck S., Shats I., et al., Axonal growth of embryonic stem cell-derived motoneurons in vitro and in motoneuron-injured adult rats, Proc Natl Acad Sci U S A, 2004, 101, 7123–7128PubMedCrossRefGoogle Scholar
  127. [127]
    Corti S., Nizzardo M., Nardini M., Donadoni C., Salani S., Ronchi D., et al., Neural stem cell transplantation can ameliorate the phenotype of a mouse model of spinal muscular atrophy, J Clin Invest, 2008, 118, 3316–3330PubMedCrossRefGoogle Scholar
  128. [128]
    Flax J. D., Aurora S., Yang C., Simonin C., Wills A. M., Billinghurst L. L., et al., Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes, Nat Biotechnol, 1998, 16, 1033–1039PubMedCrossRefGoogle Scholar
  129. [129]
    Lee J. P., Jeyakumar M., Gonzalez R., Takahashi H., Lee P. J., Baek R. C., et al., Stem cells act through multiple mechanisms to benefit mice with neurodegenerative metabolic disease, Nat Med, 2007, 13, 439–447PubMedCrossRefGoogle Scholar
  130. [130]
    Park K. I., Teng Y. D., Snyder E. Y., The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue, Nat Biotechnol, 2002, 20, 1111–1117PubMedCrossRefGoogle Scholar
  131. [131]
    Nayak M. S., Kim Y. S., Goldman M., Keirstead H. S., Kerr D. A., Cellular therapies in motor neuron diseases, Biochim Biophys Acta, 2006, 1762, 1128–1138PubMedGoogle Scholar
  132. [132]
    Corti S., Nizzardo M., Nardini M., Donadoni C., Salani S., Ronchi D., et al., Embryonic stem cell-derived neural stem cells improve spinal muscular atrophy phenotype in mice, Brain, 2010, 133, 465–481PubMedCrossRefGoogle Scholar
  133. [133]
    Azzouz M., Le T., Ralph G. S., Walmsley L., Monani U. R., Lee D. C., et al., Lentivector-mediated SMN replacement in a mouse model of spinal muscular atrophy, J Clin Invest, 2004, 114, 1726–1731PubMedGoogle Scholar
  134. [134]
    Baughan T., Shababi M., Coady T. H., Dickson A. M., Tullis G. E., Lorson C. L., Stimulating full-length SMN2 expression by delivering bifunctional RNAs via a viral vector, Mol Ther, 2006, 14, 54–62PubMedCrossRefGoogle Scholar
  135. [135]
    Baughan T. D., Dickson A., Osman E. Y., Lorson C. L., Delivery of bifunctional RNAs that target an intronic repressor and increase SMN levels in an animal model of spinal muscular atrophy, Hum Mol Genet, 2009, 18, 1600–1611PubMedCrossRefGoogle Scholar
  136. [136]
    Madocsai C., Lim S. R., Geib T., Lam B. J., Hertel K. J., Correction of SMN2 Pre-mRNA splicing by antisense U7 small nuclear RNAs, Mol Ther, 2005, 12, 1013–1022PubMedCrossRefGoogle Scholar
  137. [137]
    Geib T., Hertel K. J., Restoration of full-length SMN promoted by adenoviral vectors expressing RNA antisense oligonucleotides embedded in U7 snRNAs, PLoS One, 2009, 4, e8204PubMedCrossRefGoogle Scholar
  138. [138]
    Meyer K., Marquis J., Trub J., Nlend Nlend R., Verp S., Ruepp M. D., et al., Rescue of a severe mouse model for spinal muscular atrophy by U7 snRNA-mediated splicing modulation, Hum Mol Genet, 2009, 18, 546–555PubMedCrossRefGoogle Scholar
  139. [139]
    Valori C. F., Ning K., Wyles M., Mead R. J., Grierson A. J., Shaw P. J., et al., Systemic delivery of scAAV9 expressing SMN prolongs survival in a model of spinal muscular atrophy, Sci Transl Med, 2010, 2, 35ra42PubMedGoogle Scholar
  140. [140]
    Bevan A. K., Hutchinson K. R., Foust K. D., Braun L., McGovern V. L., Schmelzer L., et al., Early heart failure in the SMNΔ7 model of spinal muscular atrophy and correction by postnatal scAAV9-SMN delivery, Hum Mol Genet, 2010, 19, 3895–3905PubMedCrossRefGoogle Scholar
  141. [141]
    Passini M. A., Bu J., Roskelley E. M., Richards A. M., Sardi S. P., O’Riordan C. R., et al., CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy, J Clin Invest, 2010, 120, 1253–1264PubMedCrossRefGoogle Scholar
  142. [142]
    Foust K. D., Wang X., McGovern V. L., Braun L., Bevan A. K., Haidet A. M., et al., Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN, Nat Biotechnol, 2010, 28, 271–274PubMedCrossRefGoogle Scholar
  143. [143]
    Liu X., Jiang Q., Mansfield S. G., Puttaraju M., Zhang Y., Zhou W., et al., Partial correction of endogenous DeltaF508 CFTR in human cystic fibrosis airway epithelia by spliceosome-mediated RNA transsplicing, Nat Biotechnol, 2002, 20, 47–52PubMedGoogle Scholar
  144. [144]
    Rodriguez-Martin T., Garcia-Blanco M. A., Mansfield S. G., Grover A. C., Hutton M., Yu Q., et al., Reprogramming of tau alternative splicing by spliceosome-mediated RNA trans-splicing: implications for tauopathies, Proc Natl Acad Sci U S A, 2005, 102, 15659–15664PubMedCrossRefGoogle Scholar
  145. [145]
    Coady T. H., Shababi M., Tullis G. E., Lorson C. L., Restoration of SMN function: delivery of a trans-splicing RNA re-directs SMN2 pre-mRNA splicing, Mol Ther, 2007, 15, 1471–1478PubMedCrossRefGoogle Scholar
  146. [146]
    Ning K., Drepper C., Valori C. F., Ahsan M., Wyles M., Higginbottom A., et al., PTEN depletion rescues axonal growth defect and improves survival in SMN-deficient motor neurons, Hum Mol Genet, 2010, 19, 3159–3168PubMedCrossRefGoogle Scholar
  147. [147]
    Kirkinezos I. G., Hernandez D., Bradley W. G., Moraes C. T., Regular exercise is beneficial to a mouse model of amyotrophic lateral sclerosis, Ann Neurol, 2003, 53, 804–807PubMedCrossRefGoogle Scholar
  148. [148]
    Mahoney D. J., Rodriguez C., Devries M., Yasuda N., Tarnopolsky M. A., Effects of high-intensity endurance exercise training in the G93A mouse model of amyotrophic lateral sclerosis, Muscle Nerve, 2004, 29, 656–662PubMedCrossRefGoogle Scholar
  149. [149]
    Hsieh-Li H. M., Chang J. G., Jong Y. J., Wu M. H., Wang N. M., Tsai C. H., et al., A mouse model for spinal muscular atrophy, Nat Genet, 2000, 24, 66–70PubMedCrossRefGoogle Scholar
  150. [150]
    Butchbach M. E., Rose F. F., Jr., Rhoades S., Marston J., McCrone J. T., Sinnott R., et al., Effect of diet on the survival and phenotype of a mouse model for spinal muscular atrophy, Biochem Biophys Res Commun, 2010, 391, 835–840PubMedCrossRefGoogle Scholar
  151. [151]
    Bertini E., Burghes A., Bushby K., Estournet-Mathiaud B., Finkel R. S., Hughes R. A., et al., 134th ENMC International Workshop: Outcome Measures and Treatment of Spinal Muscular Atrophy, 11–13 February 2005, Naarden, The Netherlands, Neuromuscul Disord, 2005, 15, 802–816PubMedCrossRefGoogle Scholar
  152. [152]
    Hirtz D., Iannaccone S., Heemskerk J., Gwinn-Hardy K., Moxley R., 3rd, Rowland L. P., Challenges and opportunities in clinical trials for spinal muscular atrophy, Neurology, 2005, 65, 1352–1357PubMedCrossRefGoogle Scholar
  153. [153]
    Iannaccone S. T., Hynan L. S., Reliability of 4 outcome measures in pediatric spinal muscular atrophy, Arch Neurol, 2003, 60, 1130–1136PubMedCrossRefGoogle Scholar
  154. [154]
    Main M., Kairon H., Mercuri E., Muntoni F., The Hammersmith functional motor scale for children with spinal muscular atrophy: a scale to test ability and monitor progress in children with limited ambulation, Eur J Paediatr Neurol, 2003, 7, 155–159PubMedCrossRefGoogle Scholar
  155. [155]
    Mercuri E., Messina S., Battini R., Berardinelli A., Boffi P., Bono R., et al., Reliability of the Hammersmith functional motor scale for spinal muscular atrophy in a multicentric study, Neuromuscul Disord, 2006, 16, 93–98PubMedCrossRefGoogle Scholar
  156. [156]
    Merlini L., Bertini E., Minetti C., Mongini T., Morandi L., Angelini C., et al., Motor function-muscle strength relationship in spinal muscular atrophy, Muscle Nerve, 2004, 29, 548–552PubMedCrossRefGoogle Scholar
  157. [157]
    De Gruttola V. G., Clax P., DeMets D. L., Downing G. J., Ellenberg S. S., Friedman L., et al., Considerations in the evaluation of surrogate endpoints in clinical trials. summary of a National Institutes of Health workshop, Control Clin Trials, 2001, 22, 485–502PubMedCrossRefGoogle Scholar
  158. [158]
    Lesko L. J., Atkinson A. J., Jr., Use of biomarkers and surrogate endpoints in drug development and regulatory decision making: criteria, validation, strategies, Annu Rev Pharmacol Toxicol, 2001, 41, 347–366PubMedCrossRefGoogle Scholar
  159. [159]
    Sproule D.M., Kaufmann P., Therapeutic developments in spinal muscular atrophy, Ther Adv Neurol Disorders, 2010, 3, 173–185CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2010

Authors and Affiliations

  • Heidi R. Fuller
    • 1
    • 2
  • Marija Barišić
    • 3
  • Đurđica Šešo-Šimić
    • 4
  • Tea Špeljko
    • 5
  • Glenn E. Morris
    • 1
    • 2
  • Goran Šimić
    • 5
  1. 1.Wolfson Centre for Inherited Neuromuscular DiseaseRJAH Orthopaedic HospitalOswestryUK
  2. 2.Institute of Science and Technology in MedicineKeele UniversityKeeleUK
  3. 3.Department of OphthalmologyUniversity Hospital Center “Zagreb”ZagrebCroatia
  4. 4.Department of PaediatricsZagreb-East Medical CenterZagrebCroatia
  5. 5.Department of Neuroscience, Croatian Institute for Brain ResearchUniversity of Zagreb Medical SchoolZagrebCroatia

Personalised recommendations