Translational Neuroscience

, Volume 1, Issue 3, pp 238–243 | Cite as

Astrocyte expression of D2-like dopamine receptors in the prefrontal cortex

  • Mihovil Mladinov
  • Davor Mayer
  • Luka Brčić
  • Elizabeth Wolstencroft
  • Nguyen thi Man
  • Ian Holt
  • Patrick R. Hof
  • Glenn E. Morris
  • Goran Šimić
Research Article
  • 136 Downloads

Abstract

The dopaminergic system is of crucial importance for understanding human behavior and the pathogenesis of many psychiatric and neurological conditions. The majority of studies addressing the localization of dopamine receptors (DR) examined the expression of DR in neurons, while its expression, precise anatomical localization and possible function in glial cells have been largely neglected. Here we examined the expression of D2-like family of DR in neuronal and glial cells in the normal human brain using immunocytochemistry and immunofluorescence. Tissue samples from the right orbitomedial (Brodmann’s areas 11/12), dorsolateral (areas 9/46) and dorsal medial (area 9) prefrontal cortex were taken during autopsy from six subjects with no history of neurological or psychiatric disorders, formalin-fixed, and embedded in paraffin. The sections were stained using novel anti-DRD2, anti-DRD3, and anti-DRD4 monoclonal antibodies. Adjacent sections were labeled with an anti-GFAP (astroglial marker) and an anti-CD68 antibody (macrophage/microglial marker). The pyramidal and non-pyramidal cells of all three regions analyzed had strong expression of DRD2 and DRD4, whereas DRD3 were very weakly expressed. DRD2 were more strongly expressed in layer III compared to layer V pyramidal neurons. In contrast, DRD4 receptors had a stronger expression in layer V neurons. The most conspicuous finding was the strong expression of DRD2, but not DRD3 or DRD4, receptors in the white matter fibrous astrocytes and in layer I protoplasmic astrocytes. Weak DRD2-immunoreactivity was also observed in protoplasmic astrocytes in layers III and V. These results suggest that DR-expressing astrocytes directly participate in dopaminergic transmission of the human prefrontal cortex.

Keywords

Astrocytes Depression Dopamine receptors Drug abuse Monoclonal antibodies Prefrontal cortex Schizophrenia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Winterer G., Weinberger D.R., Genes, dopamine and cortical signalto-noise ration in schizophrenia, Trends Neurosci., 2004, 27, 683–690CrossRefPubMedGoogle Scholar
  2. [2]
    Arrias-Carrión O., Poppel E., Dopamine, learning, and reward-seeking behavior, Acta Neurobiol. Exp., 2007, 67, 481–488Google Scholar
  3. [3]
    Šešo-Šimić Đ., Sedmak G., Hof P.R., Šimić G., Recent advances in the neurobiology of attachment behavior, Transl. Neurosci., 2010, 2, 148–159Google Scholar
  4. [4]
    Gaspar P., Berger B., Febvret A., Vigny A., Henry J.P., Catecholamine innervation of the human cerebral cortex as revealed by comparative immunohistochemistry of tyrosine hydroxylase and dopamine-beta-hydroxylase, J. Comp. Neurol., 1989, 279, 249–271CrossRefPubMedGoogle Scholar
  5. [5]
    Raghanti M.A., Stimpson C.D., Marcinkiewicz J.L., Erwin J.M., Hof P.R., Sherwood C.C., Cortical dopaminergic innervation among humans, chimpanzees, and macaque monkeys: a comparative study, Neuroscience, 2008, 155, 203–220CrossRefPubMedGoogle Scholar
  6. [6]
    Lewis D.A., Melchitzky D.S., Sesack S.R., Whitehead R.E., Auh S., Sampson A., Dopamine transporter immunoreactivity in monkey cerebral cortex: regional, laminar, and ultrastructural localization, J. Comp. Neurol., 2001, 432, 119–136CrossRefPubMedGoogle Scholar
  7. [7]
    Björklund A., Dunnet S.B., Dopamine neuron systems in the brain: an update, Trends Neurosci., 2007, 30, 194–202CrossRefPubMedGoogle Scholar
  8. [8]
    Seeman P., Dopamine receptor sequences: therapeutic levels of neuroleptics occupy D2 receptors, clozapine occupies D4, Neuropsychopharmacology, 1992, 7, 261–284PubMedGoogle Scholar
  9. [9]
    Mrzljak L., Bergson C., Pappy M., Huff R., Levenson R., Goldman-Rakic P.S., Localization of dopamine D4 receptors in GABAergic neurons of the primate brain, Nature, 1996, 381, 245–248CrossRefPubMedGoogle Scholar
  10. [10]
    Sokoloff P., Giros B., Martres M.P., Bouthenet M.L., Schwartz J.C., Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics, Nature, 1990, 347, 146–151CrossRefPubMedGoogle Scholar
  11. [11]
    Suzuki M., Hurd Y.L., Sokoloff P., Schwartz J.C., Sedvall G., D3 dopamine receptor mRNA is widely expressed in the human brain, Brain Res., 1998, 779, 58–74CrossRefPubMedGoogle Scholar
  12. [12]
    Hurd Y.L., Suzuki M., Sedvall G., D1 and D2 dopamine receptor mRNA expression in whole hemisphere sections of the human brain, J. Chem. Neuroanat., 2001, 22, 127–137CrossRefPubMedGoogle Scholar
  13. [13]
    Martres M.P., Bouthenet M.L., Sales N., Sokoloff P., Schwartz J.C., Widespread distribution of brain dopamine receptors evidenced with [125I]iodosulpride, a highly selective ligand, Science, 1985, 228, 752–755CrossRefPubMedGoogle Scholar
  14. [14]
    Camps M., Cortes R., Gueye B., Probst A., Palacios J.M., Dopamine receptors in human brain: autoradiographic distribution of D2R sites, Neuroscience, 1989, 28, 275–90CrossRefPubMedGoogle Scholar
  15. [15]
    Lidow M.S., Goldman-Rakic P.S., Rakic P., Innis R.B., Dopamine D2 receptors in the cerebral cortex: distribution and pharmacological characterization with [3H] raclopride, Proc. Natl. Acad. Sci. USA, 1989, 86, 6412–6416CrossRefPubMedGoogle Scholar
  16. [16]
    Lidow M.S., Goldman-Rakic P.S., Gallager D.W., Rakic P., Distribution of dopaminergic receptors in the primate cerebral cortex: Quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH23390, Neuroscience, 1991, 40, 657–671CrossRefPubMedGoogle Scholar
  17. [17]
    Levant B., Differential distribution of D3 dopamine receptors in the brains of several mammalian species, Brain Res., 1998, 800, 269–274CrossRefPubMedGoogle Scholar
  18. [18]
    Paspalas C.D., Goldman-Rakic P.S., Microdomains for dopamine volume neurotransmission in primate prefrontal cortex, J. Neurosci., 2004, 24, 5292–5300CrossRefPubMedGoogle Scholar
  19. [19]
    Khan Z.U., Gutierrez A., Martin R., Penafiel A., Rivera A., De La Calle A., Differential regional and cellular distribution of dopamine D2-like receptors: an immunocytochemical study of subtype-specific antibodies in rat and human brain, J. Comp. Neurol., 1998, 402, 353–371CrossRefPubMedGoogle Scholar
  20. [20]
    Khan Z.U., Koulen P., Rubinstein M., Grandy D.K., Goldman-Rakic P.S., An astroglia-linked dopamine D2-receptor action in prefrontal cortex, Proc. Natl. Acad. Sci. USA, 2001, 98, 1964–1969CrossRefPubMedGoogle Scholar
  21. [21]
    Negyessy L., Goldman-Rakic P.S., Subcellular localization of the dopamine D2 receptor and coexistence with the calcium-binding protein neuronal calcium sensor-1 in the primate prefrontal cortex, J. Comp. Neurol., 2005, 488, 464–475CrossRefPubMedGoogle Scholar
  22. [22]
    Gaspar P., Bloch B., Le Moine C., D1 and D2 receptor gene expression in the rat frontal cortex: cellular localization in different classes of efferent neurons, Eur. J. Neurosci., 1995, 7, 1050–1063CrossRefPubMedGoogle Scholar
  23. [23]
    Meador-Woodruff J.H., Damask S.P., Wang J., Haroutunian V., Davis K.L., Watson S.J., Dopamine receptor mRNA expression in human striatum and neocortex, Neuropsychopharmacology, 1996, 15, 17–29CrossRefPubMedGoogle Scholar
  24. [24]
    Henn F.A., Anderson D.J., Sellström, Å., Possible relationship between glial cells, dopamine and the effects of antipsychotic drugs, Nature, 1977, 266, 637–638CrossRefPubMedGoogle Scholar
  25. [25]
    Miyazaki I., Asanuma M., Diaz-Corrales F.J., Miyoshi K., Ogawa N., Direct evidence for expression of dopamine receptors in astrocytes from basal ganglia, Brain Res., 2004, 1029, 120–123CrossRefPubMedGoogle Scholar
  26. [26]
    Kumar U., Patel S.C., Immunohistochemical localization of dopamine receptor subtypes (D1R-D5R) in Alzheimer’s disease brain, Brain. Res., 2007, 1131, 187–196CrossRefPubMedGoogle Scholar
  27. [27]
    Beazely M.A., Tong A., Wei W.L., Van Tol H., Sidhu B., MacDonald J.F., D2-class dopamine receptor inhibition of NMDA currents in prefrontal cortical neurons is platelet-derived growth factor receptor-dependent, J. Neurochem., 2006, 98, 1657–1663CrossRefPubMedGoogle Scholar
  28. [28]
    Wolstencroft E.C., Simic G., thi Man N, Holt I, Lam LT, Buckland P.R. et al., Endosomal location of dopamine receptors in neuronal cell cytoplasm, J. Mol. Histol., 2007, 38, 333–340CrossRefPubMedGoogle Scholar
  29. [29]
    Lewis D.A., Campbell M.J., Foote S.L., Morrison J.H., The monoaminergic innervation of primate neocortex, Hum. Neurobiol., 1986, 5, 181–188PubMedGoogle Scholar
  30. [30]
    Lewis D.A., Campbell M.J., Foote S.L., Goldstein M., Morrison J.H., The distribution of tyrosine hydroxylase-immunoreactive fibers in primate neocortex is widespread but regionally specific, J. Neurosci., 1987, 7, 279–290PubMedGoogle Scholar
  31. [31]
    Lewis D.A., Foote S.L., Goldstein M., Morrison J.H., The dopaminergic innervation of monkey prefrontal cortex: a tyrosine hydroxylase immunohistochemical study, Brain Res., 1988, 449, 225–243CrossRefPubMedGoogle Scholar
  32. [32]
    Berger B., Gaspar P., Verney C., Dopaminergic innervation of the cerebral cortex: unexpected differences between rodent and primate, Trends Neurosci., 1991, 14, 21–27CrossRefPubMedGoogle Scholar
  33. [33]
    Halliday G.M., Törk I., Comparative anatomy of the ventromedial mesencephalic tegmentum in the rat, cat, monkey and human, J. Comp. Neurol., 1986, 252, 423–445CrossRefPubMedGoogle Scholar
  34. [34]
    Goldman-Rakic P.S., Lidow M.S., Gallagher D.W., Overlap of dopaminergic, adrenergic, and serotoninergic receptors and complementarity of their subtypes in primate prefrontal cortex, J. Neurosci., 1990, 10, 2125–2138PubMedGoogle Scholar
  35. [35]
    Goldman-Rakic P.S., Leranth C., Williams S.M., Mons N., Geffard M., Dopamine synaptic complex with pyramidal neurons in primate cerebral cortex, Proc. Natl. Acad. Sci. USA, 1989, 86, 9015–9019CrossRefPubMedGoogle Scholar
  36. [36]
    Berger B., Trottier S., Verney C., Gaspar P., Alvarez A., Regional and laminar distribution of the dopamine and serotonin innervation in the macaque cerebral cortex: a radioautographic study, J. Comp. Neurol., 1988, 273, 99–119CrossRefPubMedGoogle Scholar
  37. [37]
    Berger B., Verney C., Goldman-Rakic P.S., Prenatal monoaminergic innervation of the cerebral cortex: differences between rodents and primates. In: Neurodevelopment, Aging and Cognition (eds. Kostović I, Knežević S, Wisniewski HM, Spilich GJ), Birkhuser: Boston, Basel, Berlin, 1992, 18–36Google Scholar
  38. [38]
    Campbell M.J., Lewis D.A., Foote S.L., Morrison J.H., Distribution of choline acetyltransferase-, serotonin-, dopamine-beta-hydroxylase-, tyrosine hydroxylase-immunoreactive fibers in monkey primary auditory cortex, J. Comp. Neurol., 1987, 261, 209–220CrossRefPubMedGoogle Scholar
  39. [39]
    Foote S.L., Morrison J.H., Extrathalamic modulation of cortical function. Annu. Rev. Neurosci., 1987, 10, 67–95CrossRefPubMedGoogle Scholar
  40. [40]
    Dorus S., Vallender E.J., Evans P.D., Anderson J.R., Gilbert S.L., Mahowald M., et al., Accelerated evolution of nervous system genes in the origin of Homo sapiens, Cell, 2004, 119, 1027–1040CrossRefPubMedGoogle Scholar
  41. [41]
    Akil M., Pierri J.N., Whitehead R.E., Edgar C.L., Mohila C., Sampson A.R. et al., Lamina-specific alterations in the dopamine innervation of the prefrontal cortex in schizophrenic patients, Am. J. Psychiatry, 1999, 156, 1580–1589PubMedGoogle Scholar
  42. [42]
    Reuss B., Unsicker K., Survival and differentiation of dopaminergic mesencephalic neurons are promoted by dopamine-mediated induction of FGF-2 in striatal astroglial cells, Mol. Cell. Neurosci., 2000, 16, 781–792CrossRefPubMedGoogle Scholar
  43. [43]
    Ohta K., Kuno S., Inoue S., Ikeda E, Fujinami A, Ohta M., The effect of dopamine agonists: the expression of GDNF, NGF, and BDNF in cultured mouse astrocytes, J. Neurol. Sci., 2010, 291, 12–16CrossRefPubMedGoogle Scholar
  44. [44]
    Reuss B., Unsicker K., Atypical neuroleptic drugs downregulate dopamine sensitivity in rat cortical and striatal astrocytes, Mol. Cell. Neurosci., 2001, 18, 197–209CrossRefPubMedGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2010

Authors and Affiliations

  • Mihovil Mladinov
    • 1
  • Davor Mayer
    • 2
  • Luka Brčić
    • 3
  • Elizabeth Wolstencroft
    • 4
  • Nguyen thi Man
    • 5
  • Ian Holt
    • 5
  • Patrick R. Hof
    • 6
  • Glenn E. Morris
    • 5
  • Goran Šimić
    • 1
  1. 1.Department of Neuroscience, Croatian Institute for Brain ResearchZagreb University School of MedicineZagrebCroatia
  2. 2.Department of Forensic Medicine and CriminologyZagreb University School of MedicineZagrebCroatia
  3. 3.Department of PathologyZagreb University School of MedicineZagrebCroatia
  4. 4.Department of Molecular GeneticsRoyal Devon and Exeter NHS FoundationTrustUK
  5. 5.Robert Jones and AgnesHunt Orthopaedic HospitalOswestryUK
  6. 6.Department of NeuroscienceMount Sinai School of MedicineNew YorkUSA

Personalised recommendations