Central European Journal of Geosciences

, Volume 2, Issue 4, pp 455–474

Earthquake source parameters at the sumatran fault zone: Identification of the activated fault plane

  • Madlazim Kasmolan
  • Bagus Jaya Santosa
  • Jonathan M. Lees
  • Widya Utama
Research Article


Fifteen earthquakes (Mw 4.1–6.4) occurring at ten major segments of the Sumatran Fault Zone (SFZ) were analyzed to identify their respective fault planes. The events were relocated in order to assess hypocenter uncertainty. Earthquake source parameters were determined from three-component local waveforms recorded by IRIS-DMC and GEOFON broadband lA networks. Epicentral distances of all stations were less than 10°. Moment tensor solutions of the events were calculated, along with simultaneous determination of centroid position. Joint analysis of hypocenter position, centroid position, and nodal planes produced clear outlines of the Sumatran fault planes. The preferable seismotectonic interpretation is that the events activated the SFZ at a depth of approximately 14–210 km, corresponding to the interplate Sumatran fault boundary. The identification of this seismic fault zone is significant to the investigation of seismic hazards in the region.


Sumatran Fault Zone three-component local waveform inversion earthquake source parameters fault plane 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    McCarthy A.J., Elders C.F., Cenozolc Deformation In Sumatra: Oblique Subduction and the Development of the Sumatran Fault System. In: Fraser, A.J., Matthews, S.J., Murphy, R.W. (Eds.), Petroleum Geology of Southeast Asia. Geol. Soc. Spec. Pubs, 1997, 126, 355-363Google Scholar
  2. [2]
    Natawldjaya D.H, Neotectonlcs of the Sumatra Fault and Paleogeodesy of the Sumatra Subduction Zone, PhD thesis, California Institute of Technology Pasadena, USA, 2002Google Scholar
  3. [3]
    Yeats R., Sieh K., Allen C., The Geology of Earth-quakes, Oxford University Press, New York, 1997Google Scholar
  4. [4]
    Lasitha S., Radhakrishna M., Sanu T.D., Seismically active deformation in the Sumatra-Java Trench-arc region: Geodynamic Implications, Current Science, 2006, 90, 690–696Google Scholar
  5. [5]
    Prawirodirdjo L., Bock Y., McCaffrey R., and e. al., Geodetic observations of interseismic strain segmentation at the Sumatra subduction zone, Geophys. Res. Lett., 1997, 24, 2601–2604CrossRefGoogle Scholar
  6. [6]
    McCaffrey R., Slip vectors and stretching of the Sumatran fore arc, Geology, 1991, 19, 881–884CrossRefGoogle Scholar
  7. [7]
    Bellier O., Sebrier M., Is the slip rate variation on the Great Sumatran Fault accommodated by fore-arc stretching? Geophys. Res. Lett., 1995, 22, 1969–1972CrossRefGoogle Scholar
  8. [8]
    Natawidjaya D.H, The Sumatran Fault Zone — from Source to Hazard, Journal of Earthquake and Tsunami, 2007, 1, 21–47CrossRefGoogle Scholar
  9. [9]
    Haslinger F., Kissling E., Ansorge J., Hatzfeld D., Papadimitriou E., Karakostas V., Makropoulos K., Kahle H.-G., Peter, Y., 3D crustal structure from local earthquake tomography around the Gulf of Arta (Ionian region, NW Greece), Tectonophysics, 1999, 304, 201–218CrossRefGoogle Scholar
  10. [10]
    Santosa B.J., Analyzing the seismogram of earthquakes on Sumatra-Java Subduction plane at CHTO observation station, Journal MIPA, 2005, 13, 23–29Google Scholar
  11. [11]
    Klein F.W, HYPOINVERSE, a program for VAX and Pro-350 computers to solve for earthquake locations and magnitudes, U.S. Geological Survey Open-File Report, 1985, 85–515Google Scholar
  12. [12]
    Serpetsidaki A., Sokos E., Tselentis G.A., Zahradnik J., Seismic sequence near Zakynthos Island, Greece, April 2006: identification of the activated fault plane, Tectonophysics, 2010, 480, 23–32CrossRefGoogle Scholar
  13. [13]
    Tselentis G.A., Melis N.S., Sokos E., Papatsimpa K., The Egion June 15, 1995 (6.2 ML) earthquake, Western Greece, Pure Appl. Geophysics., 1996, 147, 83–98CrossRefGoogle Scholar
  14. [14]
    Zahradnik J., Jansky J., and Plicka V., Detailed Wave form Inversion for Moment Tensors of M ≈4 Events: Examples from the Corinth Gulf, Greece, Bull. Seism. Soc. Am., 2008, 98, 2756–2771CrossRefGoogle Scholar
  15. [15]
    Goldstein P., Snoke A., SAC Availability for the IRIS Community, IRIS Consortium, DMS Electronic Newsletter, 2005, 7,www.iris.edu/news/newsletter/vol7no1/page1.htmGoogle Scholar
  16. [16]
    Sokos E., Zahradnlk J., ISOLA a Fortran code and a Matlab GUI to perform multiple-point source inversion of seismic data, Computers & Geosciences, 2008, 34, 967–977CrossRefGoogle Scholar
  17. [17]
    Kikuchi M., Kanamori H., Inversion of complex body waves — III, Bull. Seism. Soc. Am., 1991, 81, 2335–2350Google Scholar
  18. [18]
    Bouchon M., A review of the discrete wavenumber method, Pure Appl. Geophys, 2003, 160, 445–465CrossRefGoogle Scholar
  19. [19]
    Coutant O., Program of numerical simulation AXI-TRA, Laboratoire de Géophysique Interne et Tectonophysique Report, University of Joseph Fourier, 1990 (in French)Google Scholar
  20. [20]
    Zahradnik J., Serpetsidaki A., Sokos, E., Tselentis G.A., Iterative deconvolution of regional waveforms and a double-event interpretation of the Leftada earthquake, Greece, Bull. Seism. Soc. Am., 2005, 95, 159–172CrossRefGoogle Scholar
  21. [21]
    Zahradnik J., Sokos E., Tselentis G.-A., Martakis N., Non-double-couple mechanism of moderate earth-quakes near Zakynthos, Greece, April 2006; explanation terms of complexity, Geophys. Prospect, 2008, 56, 341–356CrossRefGoogle Scholar
  22. [22]
    Zahradnik J., Gallovic F., Sokos E., Serpetsidaki A. and Tselentis G.A., Quick Fault-Plane Identification by a Geometrical Method: Application to the Mw 6.2 Leonidio Earthquake, 6 January 2008, Greece. Seismological Research Letters, 2008, 79, 653–662CrossRefGoogle Scholar
  23. [23]
    Fitch T., Plate convergence, transcurrent faults, and internal deformation adjacent to southeast Asia and the western Pacific, Journal of Geophysical Research, 1972, 77, 4432–4462CrossRefGoogle Scholar
  24. [25]
    McCaffrey R., Slip vectors and stretching of the Sumatran fore arc, Geology, 1991, 19, 881–884CrossRefGoogle Scholar
  25. [25]
    Diament M., Harjono H., Karta K., Deplus C., Dahrin D., Zen Jr. M.T., Gerard M., Lassal O., Martin A., Malod J., Mentawai fault zone off Sumatra: a new key to the geodynamics of western Indonesia, Geology, 1992, 20, 259–262CrossRefGoogle Scholar
  26. [26]
    Zen Jr. M., Dahrin D., Diament M., Harjono H., Karta K., Deplus C., Gerard M., Lassal O., Malod J., Martin A., Mantawai-90 cruise result: the Sumatra oblique subduction and strike slip fault zones. In: Prasetyo H. (Ed.), Geodynamic Processes in the Forearc Sliver Plate and General Topics, Indonesian Assoc. of Geophys., Bandung, 1991, 46Google Scholar
  27. [27]
    Pramumijoyo S., Sebrier M., Neogene and Quaternary fault kinematics around the Sunda Strait area, Indonesia, J. Southeast Asian Earth Sci., 1991, 6, 137–145CrossRefGoogle Scholar
  28. [28]
    Harjono H., Diament M., Dubois J., Larue M., Seismicity of the Sunda Strait: Evidence for crustal extension and volcanological implicationa, Tectonics, 1991, 10, 17–30CrossRefGoogle Scholar
  29. [29]
    Kerry S., Natawidjaya D., Neotectonics of the Sumatra fault, Indonesia, Journal of Geophysical Research, 2002, 105, 298–309Google Scholar
  30. [30]
    Pacheco J.F., Lynn R.S., Scholz C.H., Nature of seismic coupling along simple plate boundaries of the subduction type, Journal of Geophysical Research, 1993, 98, 14133–14159CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Madlazim Kasmolan
    • 1
    • 2
  • Bagus Jaya Santosa
    • 1
  • Jonathan M. Lees
    • 3
  • Widya Utama
    • 1
  1. 1.Physics DepartmentFaculty Mathematics and Science of ITS JlSurabayaIndonesia
  2. 2.Physics DepartmentFaculty Mathematics and Science of The State University of Surabaya (UNESA) Jl. KetintangSurabayaIndonesia
  3. 3.Department of Geological SciencesUniversity of North Caroline at Chapel Hill Seismology and VolcanologyUSA

Personalised recommendations