Oceanological and Hydrobiological Studies

, Volume 42, Issue 3, pp 332–335 | Cite as

Hydroid Gonothyraea loveni found on the straightnose pipefish (Nerophis ophidion) in the Gulf of Gdańsk — symbiosis, parasitism or biofouling?

  • Anna Dziubińska
  • Mariusz Sapota
Short communication


Straightnose pipefish (Nerophis ophidion), covered with hydroid Gonothyraea loveni, were caught in August 2010 near Gdynia while fishing with fyke nets. The hydroid colonies were spaced around the fish, from the head to the anus. These colonies seemed to cause serious problems with the balance and swimming ability of the fish. It appears that there are no symbiotic or parasitic relationships between the hydroid and the fish. The fish was probably just another substrate for G. loveni and became colonized by fouling on the skin surface. It should also be taken into consideration that hydroid colonies can move from place to place with their fish host. It is possible that the hydroid benefits from the fish active search for planktonic food.

Key words

Gonothyraea loveni Nerophis ophidion Baltic Sea biofouling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aliani, S. & Molcard A. (2003). Hitch-hiking on floating marine debris: macrobenthic species in the Western Mediterranean Sea. Hydrobiologia, 503, 59–67. DOI:10.1023/B:HYDR.0000008480.95045.26.CrossRefGoogle Scholar
  2. Costello, D.P. & Henley C. (1971). Methods for obtaining and handling marine eggs and embryos. Woods Hole, MA: Marine Biological Laboratory.CrossRefGoogle Scholar
  3. Demel, K. (1962). Syngnathidae. In M. Gąsowska (Ed.), Klucze do oznaczania kręgowców Polski. Cyclostomi et Pisces, (pp. 153–156). Warszawa: PWN (in Polish).Google Scholar
  4. Demel, K. (1967). Nasz Bałtyk. Warszawa: Wiedza Powszechna, (in Polish).Google Scholar
  5. Dziubińska, A. & Janas, U. (2007). Submerged objects — a nice place to live and develop. Succession of fouling communities in the Gulf of Gdańsk, Southern Baltic. Oceanol. Hydrobiol. St., 36, 65–78. DOI:10.2478/v10009-007-0026-1.Google Scholar
  6. Hayward, P.J. & Ryland J.S. (1996). Handbook of the Marine Fauna of North-West Europe. Oxford: Oxford University Press.Google Scholar
  7. Kosevich, I.A. (2006). Branching in colonial hydroids. In J. Davies (Ed.) Molecular Biology Intelligence Unit. Branching morphogenesis (pp. 91–107). Edinburg, Scotland, UK: and Springer Science+Business Media, Inc.Google Scholar
  8. Margoński, P. (1994). Some aspects of straight-nosed (Nerophis ophidion L.) and broad-nosed (Syngnathus typhle L.) pipefish biology in the Gulf of Gdańsk. Zesz. Nauk. UG Oceanografia. 13, 39–59 (in Polish).Google Scholar
  9. Puce, S., Cerrano, C., Di Camillo C.G. & Bavestrello G. (2008). Hydroidomedusae (Cnidaria: Hydrozoa) symbiotic radiation. J. Mar. Biol. Assoc. UK. 88(8), 1715–1721. DOI:10.1017/S0025315408002233.CrossRefGoogle Scholar
  10. Slobodov, S.A. & Marfenin N.N. (2005). The features of reproduction of Obelia spp. in the White Sea. Oceanology, 45(1), 69–75.Google Scholar
  11. Theede, H., Scholz N. & Fischer H. (1979). Temperature and salinity effects on the acute toxicity of cadmium to Laomedea loveni (Hydrozoa). Mar. Ecol. Prog. Ser. 1, 13–19.CrossRefGoogle Scholar
  12. Vervoort, W. (1946). Hydrozoa (C 1) A. Hydropoliepen, Aflevering 14. Fauna van Nederland (in German).Google Scholar
  13. Vincent, A.C.J., Berglund A. & Ahnesjo I. (1995). Reproductive ecology of five pipefish species in one eelgrass meadow. Environ. Biol. Fish. 44, 347–361. DOI:10.1007/BF00008250.CrossRefGoogle Scholar
  14. Żmudziński, L. (1974). Zwierzęcy świat Bałtyku. Warszawa: Wydawnictwa Szkolne i Pedagogiczne (in Polish).Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Department of Experimental Ecology of Marine Organisms Institute of OceanographyUniversity of GdańskGdyniaPoland
  2. 2.Department of Marine Biology and Ecology Institute of OceanographyUniversity of GdańskGdyniaPoland

Personalised recommendations