Advertisement

Oceanological and Hydrobiological Studies

, Volume 42, Issue 3, pp 289–295 | Cite as

How lonely they are? A degree of isolation among macrozoobenthos species in the Marine Protected Area, the Bay of Puck, the Southern Baltic

  • Jan Marcin Węsławski
  • Lucyna Kryla-Straszewska
  • Jan Warzocha
  • Jacek Urbański
  • Maria Włodarska-Kowalczuk
  • Lech Kotwicki
Original research paper

Abstract

Extensive sampling (450 grabs) was performed all over the inner part of Puck Bay (105 km2 area) in summers of 2007–2009. The GIS-based analysis of samples was performed to assess in detail the distribution of 32 benthic species. The minimum area of occurrence was less than 1 km2 for Lekanosphaera rugicauda and the maximum was 83 km2 for Cerastoderma glaucum. The material reveals that species with the pelagic larval stage were most widespread, with the least distance between individuals and the highest average density (e.g. Cerastoderma glaucum, Hydrobia ventrosa). The most isolated and the least dense species within the studied area were discretely mobile, non-larval crustaceans (e.g. Gammarus oceanicus and Lekanosphaera rugicauda), present at single sites with the largest distance from each other. We conclude that analysis of species distribution helps in understanding the threats to populations of marine invertebrates and marine spatial planning, through locating the isolated species and populations.

Key words

Baltic habitat mapping benthos Marine Protected Areas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agardy T. (2000). Information needs for marine protected areas: scientific and societal. Bull. Mar. Sci. 66, 875–888.Google Scholar
  2. Agardy T., Bridgewater P., Crosby M.P., Day J., Dayton P.K., Kenchington R., Laffoley D., McConney P., Murray P. A., Parks J.E. & Peau L. (2003). Dangerous targets? Unresolved issues and ideological clashes around marine protected areas. Aquatic Conserv: Mar. Freshw. Ecosyst. 13, 353–367.CrossRefGoogle Scholar
  3. Andrulewicz E., Otręba Z., Węsławski J.M. & Kamińska K. (2012). Disturbances of physical properties of marines pace related to large — scale technical installations. Implications for ecosystem-based management in the Baltic Sea. Marine Management, in pressGoogle Scholar
  4. Baddeley R. & Turner R. (2005). Spatstat: an R package for analyzing spatial point patterns. Journal of Statistical Software. 12, 1–42.Google Scholar
  5. Bell JJ. & Okamura B. (2005). Low genetic diversity in a marine nature reserve: reevaluating diversity criteria in reserve design. Proc. Royal Soc. B, 272, 1067–1074.CrossRefGoogle Scholar
  6. Boero F. & Bonsdorff E. (2007). A conceptual framework for marine biodiversity and ecosystem functioning. Marine Ecology. 28, 134–145.CrossRefGoogle Scholar
  7. Boersma de P. & Parrish J.K. (1999). Limiting abuse: marine protected areas, a limited solution. Ecological Economics. 31, 287–304.CrossRefGoogle Scholar
  8. Bologna P.A.X. & Heck, K.L. (2002). Impact of Habitat Edges on Density and Secondary Production of Seagrass-associated Fauna. Estuaries. 25(5), 1033–1044.CrossRefGoogle Scholar
  9. Bonsdorff E. (2006). Zoobenthos diversity gradients in the Baltic sea: Continuous post-glacial succession in a stressed ecosystem. Journal of Exp. Marine Biol. And Ecol. 330, 383–391.CrossRefGoogle Scholar
  10. Bonsdorff E. & Pearson T. (1999). Variation in the sublittoral macrozoobenthos of the Baltic sea along environmental gradients: a functional group approach. Australian Journal of Ecology. 24, 312–326.CrossRefGoogle Scholar
  11. Bostrom C. & Bonsdorff E. (1997). Community structure and spatial variation of benthic invertebrates associated with Zostera marina (L.) beds in the northern Baltic Sea. Journal of Sea Research. 37, 153–166.CrossRefGoogle Scholar
  12. Brown J.H. (1984). On the relationship between abundance and distribution of species. The American Naturalist. 124, 255–279.CrossRefGoogle Scholar
  13. Dulvy N.K., Sadovy Y. & Reynolds J.D. (2003). Extinction vulnerability in marine populations. Fish and Fisheries. 4, 25–64.CrossRefGoogle Scholar
  14. Dziubińska A. (2011). PhD dissertation, University of Gdansk, unpublished manuscriptGoogle Scholar
  15. Elmgren, R. & C. Hill. (1997). Ecosystem function at low biodiversity — the Baltic example. In: Marine Biodiversity. Patterns and Processes. Ormond, R.F.G., Gage, J.D. and Angel, M.V. (eds). Cambridge University Press, Cambridge, 319–336.CrossRefGoogle Scholar
  16. Gic Grusza G., Urbański J., Warzocha J. & Węsławski J.M. (2009). Atlas of marine seabed habitats of Polish Marine Areas. IOPAN, Sopot, 180 pp.Google Scholar
  17. Glockzin M. & Zettler M.L. (2008). Spatial macrozoobenthic distribution patterns in relation to major environmental factors — A case study from the Pomeranian Bay (southern Baltic Sea). Journal of Sea Research. 59, 144–161.CrossRefGoogle Scholar
  18. Gray J.S. (2002). Species richness of marine soft sediments. Mar Ecol Prog Ser. 244, 285–297.CrossRefGoogle Scholar
  19. Grzelak K. & Kuklinski P. (2010). Benthic assemblages associated with rocks in a brackish environment of the southernBaltic Sea. Journal of the Marine Biological Association of the United Kingdom. 90, 115–124.CrossRefGoogle Scholar
  20. Healey D. & Hovel K.A. (2004). Seagrass bed patchiness: effects on epifaunal communities in San Diego Bay, USA. Journal of Experimental Marine Biology and Ecology. 313, 155–174.CrossRefGoogle Scholar
  21. ICES (2011). Report of the Workshop on the Science for area-based management: Coastal and Marine Spatial Planning in practice (WKCMSP). 1–4 November 2010, Lisbon, Portugal. ICES CM 2011/SSGHIE:01. 25 ppGoogle Scholar
  22. Janas, U., Zarzycki, T. & Kozik, P. (2004). Palaemon elegans — a new component of the Gulf of Gdańsk macrofauna. Oceanologia. 46, 143–146.Google Scholar
  23. Jazdzewski K. (1973). Ecology of gammarids in the Bay of Puck. Oikos, suppl. 15: 121–126.Google Scholar
  24. Jeczmien W. & Szaniawska A. (2000). Quantitative studies on Gammarus Fabr. genus in Puck Bay (the Baltic Sea). Polskie Archiwum Hydrobiologii. 47(3–4), 561–568.Google Scholar
  25. Laine A.O. (2003). Distribution of soft-bottom macrofauna in the deep open Baltic Sea in relation to environmental variability. Estuarine, Coastal and Shelf Science. 57, 87–97.CrossRefGoogle Scholar
  26. Leeuwen van A., De Roos A.M. & Persson L.(2008). How cod shapes its world. Journal of Sea Research. 60, 89–104.CrossRefGoogle Scholar
  27. Levitan D.R. (1991). Influence of body size and population density on fertilization success and reproductive output in a free spawning invertebrate. Biological Bull.(Woods Hole). 181, 261–268.CrossRefGoogle Scholar
  28. Mokievsky V.O. (2009). Marine protected areas: theoretical background for design and operation. Russian Journal of Marine Biology. 35, 504–514.CrossRefGoogle Scholar
  29. Myers R.A., Barrowman N.J., Hutching J.A. & Rosenberg A.A. (1995). Population dynamics of exploited fish stocks at low population levels. Science. 52227, 1106–1108.CrossRefGoogle Scholar
  30. Norse E.A. & Crowder L.B. (2005). Marine Conservation Biology. Island Press; Washington, Covelo, London, 470 pp.Google Scholar
  31. Osowiecki A. (1998). Macrozoobenthos distribution in the coastal zone of the Gulf of Gdansk — autumn 1994 and summer 1995. Oceanological Studies. 27, 123–136.Google Scholar
  32. Petitgas, P. (1998). Biomass-dependent dynamics of fish spatial distributions characterized by geostatistical aggregation curves. ICES Journal of Marine Science. 55, 443–453.CrossRefGoogle Scholar
  33. Pliński M. & Florczyk I. (1984). Changes in the phytobenthos resulting from the eutrophication of the Puck Bay. Limnologica (Berlin). 15, 325–327.Google Scholar
  34. Powles H., Bradford M.J., Bradford R.G., Doubleday W.G., Innes S. & Levings C.D. (2000). Assessing and protecting endangered marine species. ICES Journal of Marine Science. 57, 669–676.CrossRefGoogle Scholar
  35. Robbins B.D. & Bell S.S. (1994). Seagrass landscapes: a terrestrial approach to the marine subtidal environment. Trends in Ecology and Evolution. 9, 301–304.CrossRefGoogle Scholar
  36. Roberts D.A. & Poore A.G.B. (2005). Habitat configuration affects colonization of epifauna in a marine algal bed. Biological conservation. 127, 18–26.CrossRefGoogle Scholar
  37. Skov H., Durinck J., Leopold M.F. & Tasker M.L. (2007). A quantitative method for evaluating the importance of marine areas for conservation of birds. Biological conservation. 136, 362–371.CrossRefGoogle Scholar
  38. Smoła Z. (2012). MSc dissertation, University of GdanskGoogle Scholar
  39. Sumaila U.R. (2002). Marine protected area performance in a model of the fishery. Natural Resource Modelling. 15, 439–451.CrossRefGoogle Scholar
  40. Szymelfenig M., Kotwicki L. & Graca B. (2006). Benthic recolonization in post dredging pits in the Puck Bay (Southern Baltic). Estuarine Coastal and Shelf Science. 68, 489–498.CrossRefGoogle Scholar
  41. Tzvetkova, N. L. (1975). Coastal gammarids of the northern and Far Eastern seas of the USSR and adjacent waters. Genera Gammarus, Marinogammarus, Anisogammarus, Mesogammarus (Amphipoda, Gammaridae). Nauka, Leningrad (in Russian).Google Scholar
  42. Virnstein R.W. & Curran M.C. (1986). Colonisation of artificial seagrass versus time and distance from source. Marine Ecol. Progress Ser. 29, 279–288.CrossRefGoogle Scholar
  43. Warzocha J. (1995). Classification and structure of of macrofaunal communities in the souhern Baltic. Arch. Fish. Mar. Res. 42, 225–237.Google Scholar
  44. Weslawski J.M., Urbanski J., Kryla-Straszewska L., Andrulewicz E., Linkowski T., Kuzebski E., Meissner W, Otremba Z & Piwowarczyk J. (2010). The different uses of sea space in Polish Marine Areas: is conflict inevitable? Oceanologia. 52, 513–530.CrossRefGoogle Scholar
  45. Weslawski J.M., Warzocha J., Wiktor J., Urbanski J., Radtke K., Kryla L., Tatarek A., Kotwicki L. & Piwowarczyk J. (2009). Biological valorisation of the southern Baltic Sea (Polish Exclusive Economic Zone). Oceanologia. 51, 415–435.CrossRefGoogle Scholar
  46. Wlodarska-Kowalczuk M., Weslawski J.M., Warzocha J. & Janas U. (2010). Habitat loss and possible effects on local species richness in a speciespoor system — a case study of southern Baltic. Biodivers Conserv. 19, 3991–4002.CrossRefGoogle Scholar
  47. Worm B., Lotze H.K. & Sommer U. (2001). Algal propagule banks modify competition, consumer and resource control on Baltic rocky shores. Oecologia. 128, 281–293.CrossRefGoogle Scholar
  48. Zschokke S., Dolt C., Rusterholz H., Oggier C., Braschler B., Thommen G.H., Ludin E., Erhardt A. & Baur B. (2000). Short term responses of plants and invertebrates to experimental small-scale grassland fragmentation. Oecologia. 125, 559–572.CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Jan Marcin Węsławski
    • 1
  • Lucyna Kryla-Straszewska
    • 2
    • 4
  • Jan Warzocha
    • 3
  • Jacek Urbański
    • 2
  • Maria Włodarska-Kowalczuk
    • 1
  • Lech Kotwicki
    • 1
  1. 1.Institute of OceanologyPolish Academy of ScienceSopotPoland
  2. 2.GIS Center of the University of GdańskGdańskPoland
  3. 3.Sea Fisheries InstituteGdyniaPoland
  4. 4.International Association of Oil and Gas Producers (OGP)LondonUK

Personalised recommendations