Oceanological and Hydrobiological Studies

, Volume 42, Issue 1, pp 51–58 | Cite as

Persistent organic pollutants (POPs) in the marine food web: herrings from the southern Baltic Sea (Clupea harengus) — penguins from the zoo (Spheniscus demersus)

  • Andrzej R. Reindl
  • Jerzy Bolałek
  • Lucyna FalkowskaEmail author
Original research paper


The aim of this project was to study the fate of chemically persistent organochlorine xenobiotics in the marine link of the food web, between penguins and herrings (Clupea harengus), which are the only food for Spheniscus demersus from the Gdańsk Zoo. Concentrations of hexachlorobenzene (HCBz), pentachlorobenzene (PCBz), trichlorobenzene (TCBz) and the γ-HCH isomer were determined in Baltic herrings, in muscles, fat and liver of penguins, unhatched eggs, contour feathers and guano. The highest concentrations of fungicides were observed for HCBz. Fungicides were not detected in the liver of penguins and herrings. The bioaccumulation factor (BAF) for fungicides reached the highest values in the penguin brain. The highest biomagnification factor (BMF) for PCBz was determined in the muscle tissue and for lindane — in liver. It was confirmed that detoxification of penguins occurred through deposition of fungicides and lindane in guano and through epithelial tissue and eggs.

Key words

organochlorine fungicides lindane herring marine food web southern Baltic Sea 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Shwafi, N., Al-trabeen K. & Rasheed M. (2009). Organochlorine pesticides and polychlorinated biphenyls carcinogens residual in some fish and shell fish of Yemen. Jordan J. Biolog. Sci. 2(1), 23–28.Google Scholar
  2. Beurskens, J.E.M., Dekkner C.G.C., Jonkhoff J. & Pompstra L. (1993). Microbial dechlorination of hexachlorobenzene in a sedimentation area of the Rhine River. Biochemistry (19), 61–81.Google Scholar
  3. Bidleman, T.F. Patton G.W. Walla M.D. Hargrave B.T. Vass W.P. Erickson P. Fowler B. Scott V. & Gregor D.J. (1989). Toxaphene and other organochlorines in Arctic Ocean fauna: evidence for atmospheric delivery. Arctic 42(4), 307–313.Google Scholar
  4. Bignert, A., Boalt E. Danielsson S. Hedman J. Johansson A.K. Miller A. Nyberg E. Berger U. Borg H. Eriksson U. Holm K. Nylund K. & Haglund P. (2011). Comments Concerning the National Swedish Contaminant Monitoring Programme in Marine Biota, 2011. Sakrapport till Naturvårdsverket 7(2011), 224 pp.Google Scholar
  5. Bruhn, R. Kannan N. Petrick G. Schulz-Bull D.E. & Duinker J.C. (1999). Persistent chlorinated organic contaminants in harbour porpoises from the North Sea, the Baltic Sea and Arctic waters. Sci. Tot. Env. 237/238, 351–361.CrossRefGoogle Scholar
  6. Cederberg, T., Fromberg A. & Mosegaard H. (2000). Bioaccumulation of persistent organic compounds in herring (Culpea herengus). In Dioxin 2000 konference, 2000 (pp. 17–20) Monterey, USA.Google Scholar
  7. Chen, I.M. Chang B.V. Yuan S.Y. & Wang Y.S. (2002). Reductive dechlorination of hexachlorbenzene under various additions. Wat. Air Soil Poll. 139, 61–74.CrossRefGoogle Scholar
  8. Cifuentes, J.M. Becker P.H. Sommer U. Pacheco P. & Schlatter R. (2003). Seabird eggs as bioindicators of chemical contamination in Chile. Environ. Pollut., 126(1), 123–137.CrossRefGoogle Scholar
  9. Cripps, D.J. Peters H.A. Gocmen A. & Dogramici I. (1984). Porphyria turcica due to hexachlorobenzene: a 20 to 30 year follow-up study on 204 patients. Br. J. Dermatol. 111, 413–422. DOI: 10.1111/j.1365-2133.1984.tb06603.x.CrossRefGoogle Scholar
  10. Doong, R.A. & Lee C.Y. (1999). Determination of organochlorine pesticide residues in foods using solid-phase extraction clean-up cartridges. Analyst. 124(9), 1287–9.CrossRefGoogle Scholar
  11. Drozd, A. & Uzar J. (2007). Porfiria późna skórna u pacjentów leczonych hemodializami. Trudności diagnostyczne i terapeutyczne. Nefrologia i Dializoteriapia Polska 11(2), 83–86.Google Scholar
  12. Dubrawski, R. & Falandysz J. (1980). Chlorinated hydrocarbons in fish-eating birds from the Gdańsk Bay, Baltic Sea. Marine Poll. Bull. 11(1), 15–18 DOI:10.1016/0025-326X(80)90376-8.CrossRefGoogle Scholar
  13. Dziemianko, I. Piszko P. Simon K. & Gładysz A. (2004). Patologie wątroby w przebiegu porfirii skórnej późnej. Adv. Clin. Exp. Med., 13(5), 833–838.Google Scholar
  14. Ebadi, A.G. Zare S. & Babaee M. (2005). The study of measurement of residues of heptachlor (organochlorine pesticides) in the four fish species in Caspian Sea. Pakistan J. Biol. Sci. 8(10), 1443–1446.CrossRefGoogle Scholar
  15. El-Mekkawi, H. Diab M. Zaki M. & Hassan A. (2009). Determination of chlorinated organic pesticide residues in water, sediments and fish farms at Abbassa and Shal Al-Husainia, Shakia governorate. Australian J. Bass. Appl. Sci. 3(4), 4376–4383.Google Scholar
  16. Falandysz, J. Brudnowska B. Iwata H. & Tanabe S. (1999). Pestycydy chloroorganiczne i polichlorowane bifenyle w powietrzu atmosferycznym w Gdańsku. Roczn. PZH 50(1), 39–47.Google Scholar
  17. Falandysz, J. Strandberg L. Strandberg B. Bergqvist P.A. & Rappe C. (2000). Pentachlorobenzene and hexachlorobenzene in fish in the Gulf of Gdańsk. Pol. J. Environ. Stud. 9(2), 129–132.Google Scholar
  18. Falandysz, J. & Szefer P. (1984). Chlorinated hydrocarbons in fish-eating birds wintering in the Gdańsk Bay, 1981–82 and 1982–83. Marine Poll. Bull. 15(8), 298–301. DOI:10.1016/0025-326X(84)90198-X.CrossRefGoogle Scholar
  19. Hario, M. & Nuutinen J.M.J. (2011). Varying chick mortality in an organochlorine-strained population of the nominate Lesser Black-backed Gull Larus f. fuscus in the Baltic Sea. Ornis Fennica 88, 1–13.Google Scholar
  20. Jayachandran, G. Görisch H. & Adrian L. (2003). Dehalorespiration with hexachlorobenzene and pentachlorobenzene by Cechalococcoides sp. strain CBDB1. Arch. Microbiol. 180, 411–416.CrossRefGoogle Scholar
  21. Kołakowski, E. Bednarczyk B. Mordziak K. & Woźniak A. (2004). Wpływ chlorku wapnia na proces dojrzewania odgłowionego i patroszonego śledzia bałtyckiego solonego metodą zalewową. Acta Sci. Pol. Technol. Aliment. 3(1), 123–137.Google Scholar
  22. Liu, C. Jiang X. Wang F. Yang X. & Wang T. (2010). Hexachlorobenzene dechlorination as affected by nitrogen application in acidic paddy soil. J. Hazard. Matter., 179(1–3), 709–714.CrossRefGoogle Scholar
  23. Lundstedt-Enkel, K. Asplund L. Nylund K. Bignert A. Tysklind M. Olsson M. & Örberg J. (2006). Multivariate data analysis of organochlorines and brominated flame retardants in Baltic Sea guillemot (Uria aalge) egg and muscle. Chemosphere 65, 1591–1599.CrossRefGoogle Scholar
  24. Olsson, M. Bignert A. Aune M. Haarich M. Harms U. Korhonen M. Poutanen E.L. Roots O. & Sapota G. (2002). Organic contaminants. In: Baltic Sea Environment Proceedings No. 82B, Environment of the Baltic Sea area 1994–1998, Helsinki Commission, 133–140.Google Scholar
  25. Paasivirta, J. (2000). Long term effect of bioaccumulation in ecosystem. In: Beek B. (Ed.) The handbook of environmental chemistry. (pp. 202–227). Springer-Verlag, Berlin Heidelberg.Google Scholar
  26. Pikkarainen, A.L. (2008). Organic contaminants — occurrence and biological effects in the Baltic Sea. Doctoral dissertation. Helsinki University, Helsinki.Google Scholar
  27. Schroll, R. & Scheunert I. (1992). Uptake of the lipophilic model compound hexachlorobenzene by different plant species during the vegetation period. Fresenius Environ. Bull. 1(5), 334–338.Google Scholar
  28. Sapota G., 2006. Decreasing trend of persistent organic pollutants (POPs) in herring from the southern Baltic Sea. Ocean. Hydrob. Stud. 35(1), 15–21.Google Scholar
  29. Strandberg, B. Bandh C. van Bavel B. Bergqvist P.A. Broman D. Näf C. Pettersen H. & Rappe C. (1998). Concentrations, biomagnification and spatial variation of organochlorine compounds in a pelagic food web in the northern part of the Baltic Sea. Sci Total Environ. 217(1–2), 143–54.CrossRefGoogle Scholar
  30. Su, Y. Hung H. Blanchard P. Patton G.W. Kallenborn R. Konoplev A. Fellin P. Li H. Geen C. Stern G. Rosenberg B. & Barrie L.A. (2006). Spatial and Seasonal Variations of Hexachlorocyclohexanes (HCHs) and Hexachlorobenzene (HCB) in the Arctic Atmosphere. Environ. Sci. Technol. 40(21), 6601–6607. DOI: 10.1021/es061065q.CrossRefGoogle Scholar
  31. Vorkamp, K. Christensen J.H. Glasius M. & Riget F.F. (2004). Persistent chalogenated compounds in black guillemots (Cepphus grylle) from Grenland — levels, compound patterns and spatial trends. Mar. Poll. Bull. 48, 111–121.CrossRefGoogle Scholar
  32. Witczak, A. (2009). Effect of heat treatment on organochlorine pesticides residues in selected fish species. Pol. J. Food Nutr. Sci. 59(3), 231–235.Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Andrzej R. Reindl
    • 1
  • Jerzy Bolałek
    • 1
  • Lucyna Falkowska
    • 1
    Email author
  1. 1.Department of Marine Chemistry and Environmental Protection, Faculty of Oceanography and GeographyUniversity of GdanskGdyniaPoland

Personalised recommendations