Materials Science-Poland

, Volume 31, Issue 4, pp 572–576 | Cite as

Deep levels in GaN studied by deep level transient spectroscopy and Laplace transform deep-level spectroscopy

  • Paulina KamyczekEmail author
  • Ewa Placzek-Popko
  • Eunika Zielony
  • Zbigniew Zytkiewicz
Research Article


In this study we present the results of investigations on Schottky Au-GaN diodes by means of conventional DLTS and Laplace DLTS methods within the temperature range of 77–350 K. Si-doped GaN layers were grown by Molecular Beam Epitaxy technique (MBE) on sapphire substrates. DLTS signal spectra revealed the presence of four majority traps: two hightemperature and two low-temperature peaks. Using LDLTS method and Arrhenius plots the activation energy and capture cross sections were obtained. For two high-temperature majority traps they are equal to E1 = 0.65 eV, σ1 = 8.2 × 10−16cm2 and E2 = 0.58 eV, σ2 = 2.6 × 10−15 cm2 whereas for the two low-temperature majority traps E3 = 0.18 eV, σ3 = 9.72 × 10−18 cm2 and E4 = 0.13 eV, σ4 = 9.17 × 10−18 cm2. It was also found that the traps are related to point defects. Possible origin of the traps was discussed and the results were compared with the data found elsewhere [1–5].




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Hacke P., Detchprohm T., Hiramatsu K., Sawaki N., J. Appl. Phys., 76 (1994), 304.CrossRefGoogle Scholar
  2. [2]
    Jenkins D. W., Dow J. D., Phys. Rev. B, 39 (1989), 3317.CrossRefGoogle Scholar
  3. [3]
    Fang Z-Q., Look D. C., Kim W., Fan Z., Botchkarev A., Morkoc H., Appl. Phys. Lett., 72 (1998), 2277.CrossRefGoogle Scholar
  4. [4]
    Morkoc H., Materials Science and Engineering R, 33 (2001), 135.CrossRefGoogle Scholar
  5. [5]
    Miskufova M., Computational studies of III — V nitride Semiconductors, The Chemistry department of University College London (UCL), December 19, 2011.Google Scholar
  6. [6]
    Cho H. K., J. Appl. Phys., 94 (2003), 1485.CrossRefGoogle Scholar
  7. [7]
    Rhoderic E. H., Wiliams R. H., Metal Semiconductor Contact, 2nd ed., Clarenden, Oxford, 1988.Google Scholar
  8. [8]
    Sze S. M., Kwok K. Ng., Physics of Semiconductor Devices, 3rd ed., J. Wiley and Sons, Inc., Hoboken, New Jersey, 2007.Google Scholar
  9. [9]
    Blood P., Orton J. W., The electrical characterization of semiconductors: Majority carriers and electron states, Academic Press, 1992.Google Scholar
  10. [10]
    Dyba P., Placzek-Popko E., Zielony E., Gumienny Z., Grzanka S., Czarnecki R., Suski T., Acta Phys. Pol. A, 119 (2011), 669.Google Scholar
  11. [11]
    Wang D., Yu L. S., Lau S. S., Yu E. T., Appl. Phys. Lett., 72 (1998), 1211.CrossRefGoogle Scholar
  12. [12]
    Placzek-popko E., Trzmiel J., Zielony E., Grzanka S., Czernecki R., Suski T., Physica B, 404 (2009), 4889.CrossRefGoogle Scholar
  13. [13]
    Haase D., Schmid M., Kurner W., Dornen A., Harle V., Scholz F., Burkard M., Schweizer H., Appl. Phys. Lett., 69 (1996), 2525.CrossRefGoogle Scholar
  14. [14]
    Gotz W., Johnson N.M., Amano H., Akasaki I., Appl. Phys. Lett., 65 (1994), 463.CrossRefGoogle Scholar
  15. [15]
    Fang Z.-Q., Look D.C., Visconti P., Wang D.F., Lu C.Z., Yun F., Morkoc H., Appl. Phys. Lett., 78 (2001), 2178.CrossRefGoogle Scholar
  16. [16]
    Umana-membreno G.A., Dell J.M., Nener B.D., Parish G., Faraone L., Mishra U.K., IEEE Trans. Electron. Dev., 50 (2003), 2326.CrossRefGoogle Scholar
  17. [17]
    Wua L., Meyera W.E., Auret F.D., M. HAYES, Physica B, 340–342 (2003), 475.CrossRefGoogle Scholar
  18. [18]
    Tokuda Y., Matuoka Y., Yoshida K., Ueda H., Phys. Stat. Sol. (C), 4 (2007), 2568.CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Paulina Kamyczek
    • 1
    Email author
  • Ewa Placzek-Popko
    • 1
  • Eunika Zielony
    • 1
  • Zbigniew Zytkiewicz
    • 2
  1. 1.Institute of PhysicsWroclaw University of TechnologyWroclawPoland
  2. 2.Institute of PhysicsPolish Academy of SciencesWarsawPoland

Personalised recommendations