Materials Science-Poland

, Volume 31, Issue 3, pp 378–385 | Cite as

Performance of dye-sensitized solar cell fabricated using titania nanoparticles calcined at different temperatures

Research Article


Synthesis of titania (TiO2) nanoparticles by sol-gel method and their calcination at different temperatures, viz 450 °C, 550 °C and 650 °C (defined as T450, T550 and T650) has been done. Structural analysis indicates that the T450 sample possesses anatase phase. The phase transformation to rutile starts occurring at T550, and, on increasing the calcination temperature, the crystallization and percentage of rutile phase increases. As the temperature increases from 450 to 650 °C, the crystallite size increases by about a factor of two from 11.5 to 20.2 nm. From SEM micrographs, T550 electrode has been found to have appropriate aggregation, which led to enhanced dye desorption, as compared to T450 and T650 based electrodes. TEM images of the synthesized nanoparticles reveal that the particle size increases from 7 to 28 nm on increasing the calcination temperature from 450 to 650 °C. From the photoluminescence and Fourier transform infrared studies, it has been concluded that the surface OH groups are reduced on calcination, which affects the electron injection efficiency. The dye sensitized solar cell, fabricated using T550 sample, having a ratio of anatase/rutile 89:11, has been found to achieve the highest conversion efficiency.


DSSC TiO2 nanoparticles calcination anatase/rutile mixture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    O’Regan B., Grätzel M., Nature, 353 (1991), 737.CrossRefGoogle Scholar
  2. [2]
    Zhu P. et al., Chem. Commun., 48 (2012), 10865.CrossRefGoogle Scholar
  3. [3]
    Roy P., Kim D., Lee K., Spiecker E., Schmuki P., Nanoscale, 2 (2010), 45.CrossRefGoogle Scholar
  4. [4]
    Nolan N. T., Seery M. K., Pillai S. C., J. Phys. Chem. C, 113 (2009), 16151.CrossRefGoogle Scholar
  5. [5]
    Macwan D.P., Dave P. N. Chaturvedi S., J. Mater. Sci., 46 (2011), 3669.CrossRefGoogle Scholar
  6. [6]
    King D. M., Zhou Y., Hakim L. F., Liang X., Li P., Weimer A. W., Industrial & Engineering Chemistry Research, 48 (2009), 352.CrossRefGoogle Scholar
  7. [7]
    Wang X. M., Xiao P., Journal of Materials Research, 21 (2006), 1190.Google Scholar
  8. [8]
    Rahiminezhad-Soltani M., Saberyan K., Shahri F., Simchi A., Powder Technology, 209 (2011), 15.CrossRefGoogle Scholar
  9. [9]
    Kang S. H., Lim J. W., Kim H. S., Kim J-Y., Chung Y-H., Sung Y-E., Chem. Mater., 21 (2009), 2777.CrossRefGoogle Scholar
  10. [10]
    Kumar S., Verma N.K., Singla M. L., Digest Journal of Nanomaterials and Biostructures, 7 (2012), 607.Google Scholar
  11. [11]
    Zhao L., Ran J., Shu Z., Dai G., Zhai P., Wang S., International Journal of Photoenergy, (2012), 472958.Google Scholar
  12. [12]
    Liu G., Wang X., Chen Z., Cheng H-M, (Max) Lu G. Q., Journal of Colloid and Interface Science, 329 (2009), 331–338.CrossRefGoogle Scholar
  13. [13]
    Ohno T., Tokieda K., Higashida S., Matsumura M., Appl. Catal. A Gen, 244 (2003), 383.CrossRefGoogle Scholar
  14. [14]
    Bakardjieva S., Subrt J., S’tengl V., Dianez M. J., Sayagues M. J., Applied Catalysis B: Environmental, 58 (2005), 193.CrossRefGoogle Scholar
  15. [15]
    Porter J.F., Li Y.G., Chan C.K., J. Mater. Sci., 34 (1999), 1523.CrossRefGoogle Scholar
  16. [16]
    Puddu V., Choi H., Dionysiou D. D., Puma G. L., Applied Catalysis B: Environmental 94 (2010), 211.CrossRefGoogle Scholar
  17. [17]
    Sun P., Zhang X., Wang C., Wei Y., Wang L., Liu Y., J. Mater. Chem. A, 1 (2013), 3309.CrossRefGoogle Scholar
  18. [18]
    Chou C. S., Yang R. Y., Weng M. H., Yeh C. H., Materials Science Forum, 594 (2008), 281.CrossRefGoogle Scholar
  19. [19]
    Peralta-Ruiz Y. Y., Lizcano-Beltrán E. M., Laverde D., Acevedo-Peña P., Córdoba E. M., Quim. Nova, 35 (2012), 499.CrossRefGoogle Scholar
  20. [20]
    Peng W., Yanagida M., Han L., Ahmed S., Nanotechnology, 22 (2011), 275709.CrossRefGoogle Scholar
  21. [21]
    Li G. et al., Dalton Trans., 2009, 10078.Google Scholar
  22. [22]
    Koo B., Park J., Kim Y., Choi S.-H., Sung Y.-E., Hyeon T., J. Phys. Chem. B, 110, (2006), 24318.CrossRefGoogle Scholar
  23. [23]
    Spurr R. A., Myers H., Analytical Chemistry, 29 (1957), 760.CrossRefGoogle Scholar
  24. [24]
    Debye P., Röntgenstrahlen Z. V., Annalen der Physik., 351 (1915), 809.CrossRefGoogle Scholar
  25. [25]
    Chaveanghong S., Smith S. M., Sudchanham J., Amornsakchai T., J. Microsc. Soc. Thail., 4 (2011), 36.Google Scholar
  26. [26]
    Liu V., Li V., Sedhain A., Lin J., Jiang V., J. Phys. Chem. C, 112 (2008), 17127.CrossRefGoogle Scholar
  27. [27]
    Song X., Gao L., Langmuir, 23 (2007), 11850.CrossRefGoogle Scholar
  28. [28]
    Jun J., Jin C., Kim H., Kang J., Lee C., Appl Phys A, 96 (2009), 813.CrossRefGoogle Scholar
  29. [29]
    Kaur M., Verma N. K., J. Mater. Sci: Mater. Electron., DOI 10.1007/s10854-012-0892-5 (2012).Google Scholar
  30. [30]
    Beydoun D., Amal R., Low G. K.-C., Mcevoy S., J. Phys. Chem. B, 104 (2000), 4387.CrossRefGoogle Scholar
  31. [31]
    Ivanova V., Harizanova A., Surtchev M., Materials Letters, 55 (2002), 327.CrossRefGoogle Scholar
  32. [32]
    Beydoun D., Aamal R., Materials Science and Engineering B, 94 (2002), 71.CrossRefGoogle Scholar
  33. [33]
    Rao A. R., Dutta V., Nanotechnology, 19 (2008), 445712.CrossRefGoogle Scholar
  34. [34]
    Zhao D., Peng T., Lu L., Cai P., Jiang P., Bian Z., J. Phys. Chem. C, 112 (2008), 8486.CrossRefGoogle Scholar
  35. [35]
    Li G. et al., Dalton Trans., (2009), 10078.Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Nano Research Lab, School of Physics and Materials ScienceThapar UniversityPatialaIndia

Personalised recommendations