Materials Science-Poland

, Volume 29, Issue 3, pp 223–232 | Cite as

Determination of the electronic band structure of the rutile polymorph of TiO2: a quantum chemical approach

  • P. J. BardzińskiEmail author


The aim of this work is the investigation of the relationship between the electronic band structure of the TiO2 rutile and the dimensionality of the system. For three dimensional system the bulk form of rutile was considered, while a slab model was chosen in order to represent the titanium (IV) dioxide (110) surface. The influence of changing the number of atomic layers on the bandgap value for the (110) surface was also examined. Density of states referring to the bands from the first valence band up to the bottom of the conduction band was projected on the whole set of atomic orbitals as well as on the significant shells of the titanium and oxygen atoms. Ab initio calculations with a B3LYP functional were carried out. Basis sets used were modified Ti_86-411(d31)G_darco_unpub and O 8_411_muscat_1999. The results are compared with experimental and computational data already available in the literature. Surface termination problem was discussed and the application of the obtained results as a starting point to obtain the first model of the rutile titania nanotube was proposed. The surface formation energies for rutile planes with a different surface terminations were compared and the modification to the equation needed for surface energy calculation was introduced.


rutile band structure B3LYP surface termination surface formation energy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Zhao L., Han M., Lian J., Thin Solid Films, 516(10) (2008), 3394–3398.CrossRefGoogle Scholar
  2. [2]
    Mosaddeq-Ur-Rahman Md., Murali Krishna K., Miki T., Soga T., Igarashi K., Tanemura S., Umeno M., Solar Energy Mat. Solar Cells, 48(1–4) (1997), 123–130.CrossRefGoogle Scholar
  3. [3]
    Brudnik A., Gorzkowska-Sobas A., Pamula E., Radecka M., Zakrzewska K., J. Power Sources — X Pol. Conf. on Syst. with Fast Ion. Trans., 173(2) (2007), 774–780.Google Scholar
  4. [4]
    Nozik A.J., Nature, 257 (1975), 383–386.CrossRefGoogle Scholar
  5. [5]
    Park Y.R., Kim K.J., Thin Solid Films, 484(1–2) (2005), 34–38.CrossRefGoogle Scholar
  6. [6]
    Tian G.-L., He H.-B., Shao J.-D., Chin. Phys. Lett., 22(7) (2005), 1787–1789.CrossRefGoogle Scholar
  7. [7]
    Baizaee S.M., Mousavi N., Phys. B: Cond. Matt., 404(16) (2009), 2111–2116.CrossRefGoogle Scholar
  8. [8]
    Morgan B.J., Watson G.W., Surf. Sci., 601(21) (2007), 5034–5041.CrossRefGoogle Scholar
  9. [9]
    Zhang Y.-F., Lin W., Li Y., Ding K.-N., Li J.-Q., J. Phys. Chem. B, 109 (2005), 19270–19277.CrossRefGoogle Scholar
  10. [10]
    Nilsing M., Persson P., Lunell S., Ojamae L., J. Phys. Chem. C, 111 (2007), 12116–12123.CrossRefGoogle Scholar
  11. [11]
    Dovesi R., Saunders V.R., Roetti R., Orlando R., Zicovich-wilson C.M., Pascale F., Civalleri B., Doll K., Harrison N.M., Bush I.J., Darco P., Llunell M., CRYSTAL06, Release: 1.0; V1.0.2 fix-sequential executable; CRYSTAL06 User’s Manual, University of Torino, Torino, 2006.Google Scholar
  12. [12]
    Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A, Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery Jr. J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannen-Berg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J., Gaussian 09. Revision A.02, Gaussian, Inc., Wallingford CT, 2009.Google Scholar
  13. [13]
    Searle B.G., Comp. Phys. Commun., 137 (2001), 25.CrossRefGoogle Scholar
  14. [14]
    Vosko S.H., Wilk L., Nusair M., Can. J. Phys., 58(8) (1980), 1200.CrossRefGoogle Scholar
  15. [15]
    Bredow T., Heitjans P., Wilkening M., Phys. Rev. B, 70 (2004), 115111.CrossRefGoogle Scholar
  16. [16]
    Cora F., Mol. Phys., 103 (2005), 2483–2496.CrossRefGoogle Scholar
  17. [17]
    Muscat J., PhD Thesis, University of Manchester, Manchester, 1999.Google Scholar
  18. [18]
    Scaranto J., Giorgianni S., J. Mol. Struct. THEOCHEM, 858 (2008), 72–76.CrossRefGoogle Scholar
  19. [19]
    Burdett J.K., Hughbanks T., Miller G.J., Richardson Jr. J.W., Smith J.V., J. Am. Chem. Soc., 109 (1987), 3639–3646.CrossRefGoogle Scholar
  20. [20]
    Tasker P.W., J. Phys. C: Solid State Phys., 12 (1979), 4977–4984.CrossRefGoogle Scholar
  21. [21]
    Lipkowitz K.B., Boyd B.D., Larter R., Cundari T.R., Rev. Comput. Chem., 21 (2005), 70.Google Scholar
  22. [22]
    Kiejna A., Pabisiak T., Gao S.W., J. Phys.: Cond. Matt., 18(17) (2006), 4209.CrossRefGoogle Scholar
  23. [23]
    Satoru F., Taka-Aki I., Hiroshi O., J. Phys. Chem. B, 109 (2005), 8557–8561.CrossRefGoogle Scholar
  24. [24]
    Tanemura S., Miao L., Jin P., Kaneko K., Terai A., Nabatova-Gabain N., App. Surf. Sci. — 11 th Intern. Conf. on Solid Films and Surf., 212–213 (2003), 654–660.Google Scholar
  25. [25]
    Muscat J., Wander A., Harrison N.M., Chem. Phys. Lett., 342(3–4) (2001), 397–401.CrossRefGoogle Scholar
  26. [26]
    Pascual J., Camassel J., Mathieu H., Phys. Rev. B, 18(10) (1978), 5606–5614.CrossRefGoogle Scholar
  27. [27]
    Nowotny J., Bak T., Burg T., Nowotny M.K., Sheppard L.R., J. Phys. Chem. C, 111 (2007), 9769–9778.CrossRefGoogle Scholar
  28. [28]
    Zhang Y., Tang T.-T., Girit C., Hao Z., Martin M.C., Zettl A., Crommie M.F., Ron Shen Y., Wang F., Nature, 459 (2009), 820–823.CrossRefGoogle Scholar
  29. [29]
    Von Oertzen G.U., Gerson A.R., Int. J. Quant. Chem., 106(9) (2006), 2054–2064.CrossRefGoogle Scholar
  30. [30]
    Kasowski R.V., Tait R.H., Phys. Rev. B, 20(12) (1979), 5168–5177.CrossRefGoogle Scholar
  31. [31]
    Mor G.K., Varghese O.K., Paulose M., Grimes C.A., Adv. Funct. Mater., (2005), 1291–1296.Google Scholar
  32. [32]
    Yu J., Xiang Q., Zhou M., Appl. Catal. B: Envir., 90(3–4) (2009), 595–602.CrossRefGoogle Scholar
  33. [33]
    Lin F., Zhou G., Li Z., Li J., Wu J., Duan W., Chem. Phys. Lett., 475(1–3) (2009), 82–85.CrossRefGoogle Scholar
  34. [34]
    Wu X., Jiang Q.-Z., Ma Z.-F., Fu M., Shangguan W.-F., Solid State Commun., 136(9–10) (2005), 513–517.CrossRefGoogle Scholar
  35. [35]
    Macak J.M., Tsuchiya H., Ghicov A., Yasuda K., Hahn R., Bauer S., Schmuki P., Curr. Opinion in Solid State and Mater. Sci., 11(1–2) (2007), 3–18.CrossRefGoogle Scholar
  36. [36]
    Tsai Ch.-ch., Nian J.-N., Teng H., App. Surf. Sci., 253(4) (2006), 1898–1902.CrossRefGoogle Scholar
  37. [37]
    Zlamal M., Macak J.M., Schmuki P., Krysa J., Electrochem. Commun., 9(12) (2007), 2822–2826.CrossRefGoogle Scholar
  38. [38]
    Lai Y., Zhuang H., Sun L., Chen Z., Lin Ch., Electrochim. Acta, 54(26) (2009), 6536–6542.CrossRefGoogle Scholar
  39. [39]
    Yang Y., Wang X., Li L., Mat. Sci. Eng.: B, 149(1) (2008), 58–62.CrossRefGoogle Scholar
  40. [40]
    Chen X., Schriver M., Suen T., Mao S.S., Thin Solid Films, 515(24) (2007), 8511–8514.CrossRefGoogle Scholar
  41. [41]
    Bandura A.V. Evarestov R.A., Surf. Sci., 603(18) (2009), L117–L120.CrossRefGoogle Scholar
  42. [42]
    Liu Z., Zhang Q., Qin L.-C., Solid State Commun., 141(3) (2007), 168–171.CrossRefGoogle Scholar
  43. [43]
    Du G.H., Chen Q., Che R.C., Yuan Z.Y., Peng L.M., App. Phys. Lett., 79(22) (2001), 3702–3704.CrossRefGoogle Scholar
  44. [44]
    Wang Y.Q., Hu G.Q., Duan X.F., Sun H.L., Xue Q.K., Chem. Phys. Lett., 365(5–6) (2002), 427–431.CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2011

Authors and Affiliations

  1. 1.Imperial College London, Thomas Young CentreComputational Materials Science GroupLondonGreat Britain
  2. 2.Institute of Materials Science and Technical MechanicsWroclaw University of TechnologyWrocławPoland

Personalised recommendations