Central European Journal of Geosciences

, Volume 3, Issue 4, pp 385–397 | Cite as

The sinkhole enigma in the Alpine Foreland, Southeast Germany: Evidence of impact-induced rock liquefaction processes

  • Kord Ernstson
  • Werner Mayer
  • Andreas NeumairEmail author
  • Dirk Sudhaus
Research Article


Sudden collapse of the Quaternary soil to form sinkholes on the order of meters and tens of meters has been a geologic phenomenon within living memory in a localized area north of Lake Chiemsee in Southeast Germany. Failing a satisfying explanation, a relation with an undefined glaciation process has always been proposed. Excavations and geophysical measurements at three newly affected sites show underground features such as prominent sandy-gravelly intrusions and extrusions typical of rock liquefaction processes well known to occur during strong earthquakes. Since strong earthquakes can reasonably be excluded to have affected the area under discussion, it has been suggested that the observed widespread liquefaction is related with the recently proposed Holocene Chiemgau meteorite impact event. Except for one earlier proposed but unassertive relation between impact and liquefaction, the obviously direct association of both processes in the Chiemgau area emphasizes that observed paleoliquefaction features need not necessarily have originated solely from paleoseismicity but can provide a recognizable regional impact signature.


sinkholes (thunderholes) liquefaction seismicity meteorite impact Kienberg-Southern Germany 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Doppler G., Geological map of Bavaria (1: 25,000), sheet #7941 Trostberg, 1982Google Scholar
  2. [2]
    Bayerisches Geologisches Landesamt (ed.), Geological map of Bavaria, (1: 500,000), 4th edition, 1997Google Scholar
  3. [3]
    Stewart D., Knox R., The earthquake that never went away. Gutenberg-Richter Publications, Marble Hill, MO, 1993Google Scholar
  4. [4]
    Sims J.D., Garvin C.D., Recurrent liquefaction at Soda Lake, California, induced by the 1989 Loma Prieta earthquake, and 1990 and 1991 aftershocks: Implications for paleoseismicity studies. B. Seismol. Soc. Am., 1995, 85, 51–65Google Scholar
  5. [5]
    Obermeier S.F., The New Madrid Earthquakes: An engineering-geologic interpretation of relict liquefaction features. U.S. GPO, Washington, 1989Google Scholar
  6. [6]
    Obermeier S.F., Liquefaction evidence for strong earthquakes of Holocene and Latest Pleistocene ages in the states of Indiana and Illinois, USA. Eng. Geol., 1998, 50, 227–254CrossRefGoogle Scholar
  7. [7]
    Tuttle M.P., Hengesh J., Tucker K.B., Lettis W., Deaton S.L., Frost J.D., Observations and comparisons of liquefaction features and related effects induced by the Bhuj earthquake. Earthq. Spectra, 2002, 18(Supp. A), 79–100Google Scholar
  8. [8]
    Youd T.L., Liquefaction mechanisms and induced ground failure. In: Lee W.H.K., Kanamori H., Jennings P.C., Kisslinger C. (Eds.), International Handbook of Earthquake and Engineering Seismology, Part B, Amsterdam, Academic Press, 2003, 1159–1173CrossRefGoogle Scholar
  9. [9]
    Rydelek P.A., Tuttle M., Seismology: Explosive craters and soil liquefaction. Nature, 2004, 427, 115–116CrossRefGoogle Scholar
  10. [10]
    González de Vallejo L.I., Tsigé M., Cabrera L., Paleoliquefaction features on Tenerife (Canary Islands) in Holocene sand deposits. Eng. Geol., 2005, 76, 179–190CrossRefGoogle Scholar
  11. [11]
    Wang C.-Y., Wong A., Dreger D.S., Manga, M., Liquefaction limit during earthquakes and underground explosions: implications on groundmotion attenuation. B. Seismol. Soc. Am., 2006, 96,1, 355–363CrossRefGoogle Scholar
  12. [12]
    Obermeier S.F., Pond E.C., Olson S.M., Green R.A., 2002, Paleoliquefaction studies in continental settings. In: Ettensohn F.R., Rast N., Brett C:E., Ancient seismites. The Geological Society of America, Boulder, CO, 2002, 13–27CrossRefGoogle Scholar
  13. [13]
    Huuse M., Jackson C.A.-L., Rensbergen P.v., Davies R.J., Flemings P.B., Dixon R.J., Subsurface sediment remobilization and fluid flow in sedimentary basins: an overview. Basin Research, 2010, 22,4, 342–360, URL: CrossRefGoogle Scholar
  14. [14]
    Hurst A., Scott A., Vigorito M., Physical characteristics of sand injectites. Earth Sci. Rev., 2011, 106,3–4, 215–246, URL: http://www.sciencedirect. com/science/article/pii/S0012825211000250 CrossRefGoogle Scholar
  15. [15]
    Ross J.A., Peakall J., Keevil G.M., An integrated model of extrusive sand injectites in cohesionless sediments. Sedimentology, 2011, URL:
  16. [16]
    Alvarez W., Staley E., O’Connor D., Chan M.A., Synsedimentary deformation in the Jurassic of southeastern Utah, a case of impact shaking? Geology, 1998, 26, 579–582CrossRefGoogle Scholar
  17. [17]
    Richardson J.E., Melosh H.J., Greenberg R.J., O’Brien D.P., The global effects of impact-induced seismic activity on fractured asteroid surface morphology. Icarus, 2005, 179, 325–349CrossRefGoogle Scholar
  18. [18]
    Kirsch R. (Ed.), 2006, Groundwater Geophysics: A tool for Hydrogeology. Springer, Berlin, 2006Google Scholar
  19. [19]
    Wolf L.W., Collier J., Tuttle M., Bodin P., Geophysical reconnaissance of earthquake-induced liqefaction features in the New Madrid seismic zone. J. Appl. Geophys., 1998, 39, 121–129CrossRefGoogle Scholar
  20. [20]
    Wolf L.W., Tuttle M.P., Browning S., Park S., Geophysical surveys of earthquake-induced liquefaction deposits in the New Madrid seismic zone. Geophysics, 2006, 71, B223–230CrossRefGoogle Scholar
  21. [21]
    Al-Shukri H., Mahdi H.H., Tuttle M., Threedimensional imaging of earthquake-induced liquefaction features with ground penetrating radar near Marianna, Arkansas. Seismol. Res. Lett., 2006, 77, 505–513CrossRefGoogle Scholar
  22. [22]
    Obermeier S.F., Using liquefaction-induced features for paleoseismic analysis. In: McCalpin J.P. (Ed.), Paleoseismology. Academic Press, San Diego, CA, 1996, 331–396CrossRefGoogle Scholar
  23. [23]
    Johnston A.C., Schweig E.S., The enigma of the New Madrid Earthquakes of 1811–1812. Annu. Rev. Earth. Pl. Sc., 1996, 24, 339–384CrossRefGoogle Scholar
  24. [24]
    Tuttle M., Barstow N., Liquefaction-Related Ground Failure: A Case Study in the New Madrid Seismic Zone, Central United States. B. Seismol. Soc. Am., 1996, 86, 636–645Google Scholar
  25. [25]
    Stewart D., Knox R., 1995, The earthquake America forgot. Gutenberg-Richter Publications, Marble Hill, MO, 1995Google Scholar
  26. [26]
    Knox R., Stewart D., The New Madrid fault finders guide. Gutenberg-Richter Publications, Marble Hill, MO, 1995Google Scholar
  27. [27]
    Grünthal G., Mayer-Rosa D., Lenhardt W., Abschätzung der Erdbebengefährdung für die D-A-CHStaaten -Deutschland, Österreich, Schweiz [Estimate of earthquake hazard for the D-A-CH countries — Germany, Austria, Switzerland]. Bautechnik, 1998, 75, 753–767 (in German)Google Scholar
  28. [28]
    Galli P., New empirical relationhips between magnitude and distance for liquefaction. Tectonophysics, 2000, 324,3, 169–187CrossRefGoogle Scholar
  29. [29]
    Higgins C.G., Schoner C., Sinkholes formed by piping into buried channels. Geomorphology, 1997, 20, 307–312CrossRefGoogle Scholar
  30. [30]
    Ormö J., Rossi A.P., Komatsu G., The Sirente crater field, Italy, Meteorit. Planet. Sci., 2002, 37, 1507–1523CrossRefGoogle Scholar
  31. [31]
    Stoppa F., The Sirente crater, Italy: Impact versus mud volcano origins, Meteorit. Planet. Sci., 2006, 41, 467–477CrossRefGoogle Scholar
  32. [32]
    Speranza F., Sagnotti L. Rochette P., An anthropogenic origin of the “Sirente crater”, Abruzzi, Italy. Meteorit. Planet. Sci., 2004, 39, 635–649CrossRefGoogle Scholar
  33. [33]
    Ormö J., Koeberl C., Rossi A.P., Komatsu G., Geological and geochemical data from the proposed Sirente crater field: New age dating and evidence for heating of target, Meteorit. Planet. Sci., 2006, 41, 1331–1345CrossRefGoogle Scholar
  34. [34]
    Speranza F., Nicolosi I., Ricchetti N., Etiope G., Rochette P., Sagnotti L., DeRitis R., Chiappini M., The “Sirente crater field,” Italy, revisited. J. Geophys. Res., 2009, 114, B03103, doi:10.1029/2008JB005759CrossRefGoogle Scholar
  35. [35]
    Schüssler U., Rappenglück M., Ernstson K., Mayer W., Rappenglück, B., Das Impakt-Kraterstreufeld im Chiemgau [The impact crater strewn field in the Chiemgau region]. Eur. J. Mineral. 2005, 17,Beihefte 1, 124 (in German)Google Scholar
  36. [36]
    Ernstson K., Mayer W., Neumair A., Rappenglück B., Rappenglück M.A., Sudhaus D., Zeller K.W., The Chiemgau Crater Strewn Field: Evidence of a Holocene Large Impact Event in Southeast Bavaria, Germany. Journal of Siberian Federal University, Engineering & Technologies, 2010, 3,1, 72–103, URL: Google Scholar
  37. [37]
    Rappenglück B., Rappenglück M.A., Ernstson K., Mayer W., Neumair A., Sudhaus D., Liritzis I., The fall of Phaethon. A Greco-Roman geomyth preserves the memory of a meteorite impact in Bavaria (south-east Germany). Antiquity, 2010, 84, 428–439, URL: http: // Google Scholar
  38. [38]
    Liritzis I., Zacharias N., Polymeris G.S., Kitis G., Ernstson K., Sudhaus D., Neumair, A., Mayer W., Rappenglück M.A., Rappenglück B., The Chiemgau meteorite impact and tsunami event (Southeast Germany): First OSL dating. Mediterr. Archaeol. Ar., 2011, 10, 17–33 (in press)Google Scholar
  39. [39]
    Hiltl M., Bauer F., Ernstson K., Mayer W., Neumair A., Rappenglück M.A., SEM and TEM analyses of minerals xifengite, gupeiite, Fe2Si (hapkeite?), titanium carbide (TiC) and cubic moissanite (SiC) from the subsoil in the Alpine Foreland: Are they cosmochemical? 42nd Lunar and Planetary Science Conference, 2011, Abstract 1391.pdf., URL:
  40. [40]
    Rappenglück B., Ernstson K., Mayer W., Neumair A., Rappenglück M.A., Sudhaus D., Zeller K.W., The Chiemgau impact: an extraordinary case study for the question of Holocene meteorite impacts and their cultural implications. In: Rubiño-Martín J.A., Belmonte J.A., Prada F., Alberdi A. (Eds.), Cosmology across cultures. Proceedings of a workshop held at Parques de las Ciencias, Granada, Spain, 8–12 September 2008. Astronomical Society of the Pacific, San Francisco, 2009, 338–343, URL: Google Scholar
  41. [41]
    Yang Z.Q., Verbeeck J., Schryvers D., Tarcea N., Popp J., Rösler W., TEM and Raman characterisation of diamond micro- and nanostructures in carbon spherules from upper soils. Diam. Relat. Mater., 2008, 17, 937–943CrossRefGoogle Scholar
  42. [42]
    Rösler W., Hoffmann V., Raeymaekers B., Schryvers D., Popp J., Diamonds in carbon spherules — evidence for a cosmic impact? Meteorit. Planet. Sci., 2005, 40,Supplement (Proceedings of 68th Annual Meeting of the Meteoritical Society, held September 12–16, 2005 in Gatlinburg, Tennessee), 5114Google Scholar
  43. [43]
    Collins G.S., Melosh H.J., Marcus R.A., Earth Impact Effects Program: A Web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth. Meteorit. Planet. Sci., 2005, 40,6, 817–840CrossRefGoogle Scholar
  44. [44]
    Rubtsov V., The Tunguska Mystery. Springer, Berlin, 2009CrossRefGoogle Scholar
  45. [45]
    Amick D., Maurath G., Gelinas R., Characteristics of seismically induced liquefaction sites and features located in the vicinity of the 1886 Charleston, South Carolina, earthquake. Seismol. Res. Lett., 1990, 61,2, 117–118Google Scholar
  46. [46]
    Munson P.J., Munson C.A., Pond, E.C., Paleoliquefaction evidence for a strong Holocene earthquake in south-central Indiana. Geology, 1995, 23, 325–328CrossRefGoogle Scholar
  47. [47]
    Tuttle M.P., Schweig E.S., Recognizing and dating prehistoric liquefaction features: Lessons learned in the New Madrid seismic zone, central United States. Journal of Geophys. Res., 1996, 101,B3, 6171–6178CrossRefGoogle Scholar
  48. [48]
    Tuttle M.P., The use of liquefaction features in paleoseismology: Lessons learned in the New Madrid seismic zone, central United States. J. Seismol., 2001, 5, 361–380CrossRefGoogle Scholar
  49. [49]
    Huntoon P.W., Upheaval Dome, Canyonlands, Utah: Strain indicators that reveal an impact origin. In: Sprinkel D.A., Chidsey Jr. T.C., Anderson P.B. (Eds.), Geology of Utah’s Parks and Monuments. Utah Geological Association, Salt Lake City, 2000, 1–10Google Scholar
  50. [50]
    Melosh H.J., Impact cratering: A geologic process. Oxford University Press, New York, 1989Google Scholar
  51. [51]
    Fehr K.T., Pohl J., Hochleitner R., Burghausen meteorite strewn field: Status report, August 2002 (in German)Google Scholar
  52. [52]
    Hoffmann V., Rösler W., Patzelt A., Raeymaekers B., Van Espen P., Characterisation of a small crater-like structure in SE Bavaria, Germany. Meteorit. Planet. Sci., 2005, 40,Supplement (Proceedings of 68th Annual Meeting of the Meteoritical Society, September 12–16, 2005 in Gatlinburg, Tennessee), 5158Google Scholar
  53. [53]
    Rösler W., Patzelt A., Hoffmann V., Raeymaekers B., Characterisation of a small crater-like structure in SE Bavaria, Germany: Abstract, European Space Agency, First International Conference on Impact Cratering in the Solar System, ESTEC, Noordwijk, The Netherlands, 08–12 May., 2006Google Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2011

Authors and Affiliations

  • Kord Ernstson
    • 1
  • Werner Mayer
    • 2
  • Andreas Neumair
    • 2
    Email author
  • Dirk Sudhaus
    • 3
  1. 1.Faculty of Philosophy IUniversity of WürzburgWürzburgGermany
  2. 2.Institute for Interdisciplinary StudiesGilchingGermany
  3. 3.Institute of GeographyUniversity of AugsburgAugsburgGermany

Personalised recommendations