Skip to main content
Log in

Dynamic traffic assignment: model classifications and recent advances in travel choice principles

  • Review Article
  • Published:
Central European Journal of Engineering

Abstract

Dynamic Traffic Assignment (DTA) has been studied for more than four decades and numerous reviews of this research area have been conducted. This review focuses on the travel choice principle and the classification of DTA models, and is supplementary to the existing reviews. The implications of the travel choice principle for the existence and uniqueness of DTA solutions are discussed, and the interrelation between the travel choice principle and the traffic flow component is explained using the nonlinear complementarity problem, the variational inequality problem, the mathematical programming problem, and the fixed point problem formulations. This paper also points out that all of the reviewed travel choice principles are extended from those used in static traffic assignment. There are also many classifications of DTA models, in which each classification addresses one aspect of DTA modeling. Finally, some future research directions are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gomes G., Horowitz R., Optimal freeway ramp metering using the asymmetric cell transmission model, Transport. Res. C-Emer., 2006, 14, 244–262

    Article  Google Scholar 

  2. Meng Q., Khoo H.L., A Pareto-optimization approach for a fair ramp metering, Transport. Res. C-Emer., 2010, 18, 489–506

    Article  Google Scholar 

  3. Park B.B., Yun I., Ahn K., Stochastic optimization for sustainable traffic signal control, Int. J. Sustain. Transp., 2009, 3, 263–284

    Article  Google Scholar 

  4. Park B.B., Kamarajugadda A., Development and evaluation of a stochastic traffic signal optimization method, Int. J. Sustain. Transp., 2007, 1, 193–207

    Article  Google Scholar 

  5. Lo H.K., Szeto W.Y., Modeling advanced traveler information services: static versus dynamic paradigms, Transport. Res. B-Meth., 2004, 38, 495–515

    Article  Google Scholar 

  6. Szeto W.Y., Lo H.K., The impact of advanced traveler information services on travel time and schedule delay costs, J. Intell. Transport. S., 2005, 9, 47–55

    Article  MATH  Google Scholar 

  7. Lo H.K., Szeto W.Y., Road pricing modeling for hypercongestion, Transport. Res. A-Pol., 2005, 39, 705–722

    Google Scholar 

  8. Zhong R.X., Sumalee A., Maruyama T., Dynamic marginal cost, access control, and pollution charge: a comparison of bottleneck and whole link models, J. Adv. Transport., 2011, Accepted

  9. Ukkusuri S., Waller S., Linear programming models for the user and system optimal dynamic network design problem: formulations, comparisons and extensions, Netw. Spat. Econ., 2008, 8, 383–406

    Article  MATH  Google Scholar 

  10. Szeto W.Y., Ghosh, B., Basu, B., O’Mahony M., Cell-based short-term traffic flow forecasting using time series modelling, Transport. Eng.-J. Asce., 2009, 135, 658–667

    Article  Google Scholar 

  11. Abdelghany A.F., Adbelghany K.F., Mahmassani H.S., Murray P.M., Dynamic traffic assignment in design and evaluation of high-occupancy toll lanes, Transport. Res. Rec., 2000, 1733, 39–48

    Article  Google Scholar 

  12. Yagar S., Dynamic traffic assignment by individual path minimization and queuing, Transport. Res., 1971, 5, 179–196

    Article  Google Scholar 

  13. Cascetta E., Cantarella G.E., Modelling dynamics in transportation networks: state of the art and future developments, Simulat. Pract. Theory., 1993, 15, 65–91

    Article  Google Scholar 

  14. Peeta S., Ziliaskopoulos A.K., Foundations of dynamic traffic assignment: the past, the present and the future, Netw. Spat. Econ., 2001, 1, 233–265

    Article  Google Scholar 

  15. Boyce D., Lee D.H., Ran B., Analytical models of the dynamic traffic assignment problem, Netw. Spat. Econ., 2001, 1, 377–390

    Article  Google Scholar 

  16. Szeto W.Y., Lo H.K., Dynamic traffic assignment: review and future, Information Technology, 2005, 5, 85–100

    Google Scholar 

  17. Szeto W.Y., Lo H.K., Properties of dynamic traffic assignment with physical queues, J. East Asia Soc. Transport. Stud., 2005, 6, 2108–2123

    Google Scholar 

  18. Mun J.S., Traffic performance models for dynamic traffic assignment: an assessment of existing models, Transport. Rev., 2007, 27, 231–249

    Article  Google Scholar 

  19. Jeihani M., A review of dynamic traffic assignment computer packages, J. Transport. Res. Forum, 2007, 46, 35–46

    Google Scholar 

  20. Szeto W.Y., Cell-based dynamic equilibrium models, dynamic traffic assignment and signal control, in: Dynamic route guidance and traffic control, complex social, Economic and Engineered Networks Series, Ukkusuri S., Ozbay K. (Eds.), Springer, 2011, submitted

  21. Wardrop J., Some theoretical aspects of road traffic research, ICE Proceedings: Part II, Engineering Divisions, 1952, 1, 325–362

    Article  Google Scholar 

  22. Oppenheim N., Urban travel demand modelling: from individual choice to general equilibrium, John Wiley & Sons, USA, 1995

    Google Scholar 

  23. Daganzo C.F., Sheffi Y., On stochastic models of traffic assignment, Transport. Sci., 1977, 11, 253–274

    Article  Google Scholar 

  24. Hall R.W., Travel outcome and performance: the effect of uncertainty on accessibility, Transport. Res. BMeth., 1993, 17, 275–290

    Article  Google Scholar 

  25. Lo H.K., Luo X.W., Siu B.W.Y., Degradable transport network: travel time budget of travellers with heterogeneous risk aversion, Transport. Res. B-Meth., 2006, 40, 792–806

    Article  Google Scholar 

  26. Uchida T., Iida Y., Risk assignment: a new traffic assignment model considering the risk travel time variation, In: Daganzo C.F. (Ed.), Proceedings of the 12th International Symposium on Transportation and Traffic Theory (July 21–23, 1993, Berkeley, CA, USA), Elsevier, Amsterdam, 1993, 89–105

    Google Scholar 

  27. Jackson W.B., Jucker J.V., An empirical study of travel time variability and travel choice behavior, Transport. Sci., 1982, 16, 460–475

    Article  Google Scholar 

  28. Brastow W.C., Jucker J.V., Use of a mean variance criterion for traffic assignment, unpublished manuscript, Department of Industrial Engineering, Stanford University, 1977

  29. Szeto W.Y., Solayappan M., Jiang Y., Reliabilitybased transit assignment for congested stochastic transit networks, Comput.-Aided Civ. Inf., 2011, 26, 311–326

    Article  Google Scholar 

  30. Chen A., Zhou Z., The α-reliable mean-excess traffic equilibrium model with stochastic travel times, Transport. Res. B-Meth., 2010, 44, 493–513

    Article  Google Scholar 

  31. Franklin J.P., Karlstrom A., Travel time reliability for Stockholm roadways: modeling the mean lateness factor, Transport. Res. Rec., 2009, 2134, 106–113

    Article  Google Scholar 

  32. Chan K.S., Lam W.H.K., Impact of road pricing on the road network reliability, J. East Asia Soc. Transport. Stud., 2005, 6, 2060–2075

    Google Scholar 

  33. Ordóñez F., Stier-Moses N.E., Wardrop equilibria with risk-averse users, Transport. Sci., 2010, 44, 63–86

    Article  Google Scholar 

  34. Lam T., Small K., The value of time and reliability: measurement from a value pricing experiment, Transport. Res. E-Log., 2001, 37, 231–251

    Article  Google Scholar 

  35. Bell M.G.H., Cassir C., Risk-averse user equilibrium traffic assignment: an application of game theory, Transport. Res. B-Meth., 2002, 36, 671–681

    Article  Google Scholar 

  36. Szeto W.Y., O’Brien L., O’Mahony M., Generalisation of the risk-averse traffic assignment, In: Bell M.G.H., Heydecker B.G., Allsop R.E. (Eds.), Proceedings of 17th International Symposium on Transportation and Traffic Theory (July 23–25, 2007, London, UK), Emerald Group Publishing Limited, 2007, 127–153

  37. Szeto W.Y., O’Brien L., O’Mahony M., Measuring network reliability by considering paradoxes: the multiple network demon approach, Transport. Res. Rec., 2009, 2090, 42–50

    Article  Google Scholar 

  38. Szeto W.Y., Cooperative game approaches to measuring network reliability considering paradoxes, Transport. Res. C-Emer., 2011, 11, 229–241

    Article  Google Scholar 

  39. Szeto W.Y., O’Brien L., O’Mahony M., Risk-averse traffic assignment with elastic demand: NCP formulation and solution method for assessing performance reliability, Netw. Spat. Econ., 2006, 6, 313–332

    Article  MATH  MathSciNet  Google Scholar 

  40. Ordóñez F., Stier-Moses N.E., Robust Wardrop equilibrium, Netw. Control. Optim., 2007, 4465, 247–256

    Article  Google Scholar 

  41. Zhang C., Chen X., Sumalee A., Robust Wardrop’s user equilibrium assignment under stochastic demand and supply: expected residual minimization approach, Transport. Res. B-Meth., 2011, 45, 534–552

    Article  Google Scholar 

  42. Tversky A., Kahneman D., Advances in prospect theory: cumulative representation of uncertainty, J. Risk Uncertainty, 1992, 5, 297–323

    Article  MATH  Google Scholar 

  43. Kahneman D., Tversky A., Prospect theory: an analysis of decisions under risk, Econometrica, 1979, 47, 263–291

    Article  MATH  Google Scholar 

  44. Thaler R.H., Tversky A., Kahneman D., Schwartz A., The effect of myopia and loss aversion on risk taking: an experimental test, Quart. J. Econ., 1997, 112, 647–661

    Article  Google Scholar 

  45. Camerer C.F., Ho T.H., Violations of the betweenness axiom and nonlinearity in probability, J. Risk Uncertainty., 1994, 8, 167–196

    Article  MATH  Google Scholar 

  46. Avineri E., Prashker J.N., Violations of expected utility theory in route-choice stated preferences: certainty effect and inflating of small probabilities, Transport. Res. Rec., 2004, 1894, 222–229

    Article  Google Scholar 

  47. Avineri E., The effect of reference point on stochastic network equilibrium, Transport. Sci., 2006, 40, 409–420

    Article  Google Scholar 

  48. Mirchandani P., Soroush H., Generalized traffic equilibrium with probabilistic travel times and perceptions, Transport. Sci., 1987, 21, 133–152

    Article  MATH  MathSciNet  Google Scholar 

  49. Shao H., Lam W.H.K., Tam M.L., A reliability-based stochastic traffic assignment model for network with multiple user classes under uncertainty in demand, Netw. Spat. Econ., 2006, 6, 173–204

    Article  MATH  MathSciNet  Google Scholar 

  50. Chen A., Zhou Z., A stochastic α-reliable mean-excess traffic equilibrium model with probabilistic travel times and perception errors, In: Lam W.H.K., Wong S.C., Lo H.K. (Eds.), Proceedings of 18th International Symposium on Transportation and Traffic Theory 2009: Golden Jubilee (July 16–18, 2009), Springer, 2009, 117–145

  51. Chu Y.L., Work departure time analysis using dogit ordered generalized extreme value model, Transport. Res. Rec., 2009, 2132, 42–49

    Article  Google Scholar 

  52. Jou R.C., Kitamura R., Weng M.C., Chen C.C., Dynamic commuter departure time choice under uncertainty, Transport. Res. A-Pol., 2008, 42, 774–783

    Google Scholar 

  53. Lemp J.D., Kockelman K.M., Empirical investigation of continuous logit for departure time choice with Bayesian methods, Transport. Res. Rec., 2010, 2165, 59–68

    Article  Google Scholar 

  54. Lemp J.D., Kockelman K.M., Damien P., The continuous cross-nested logit model: Formulation and application for departure time choice, Transport. Res. B-Meth., 2010, 44, 646–661

    Article  Google Scholar 

  55. Friesz T.L., Luque F.J., Tobin R.L., Wie B.W., Dynamic network traffic assignment considered as a continuous time optimal control problem, Oper. Res., 1989, 37, 893–901

    Article  MATH  MathSciNet  Google Scholar 

  56. Vickrey W.S., Congestion theory and transport investment, Am. Econ. Rev., 1969, 59, 251–261

    Google Scholar 

  57. Mahmassani H.S., Herman R., Dynamic user equilibrium departure time and route choice on an idealized traffic arterials, Transport. Sci., 1984, 18, 362–384

    Article  Google Scholar 

  58. Merchant D.K., Nemhauser G.L., A model and an algorithm for the dynamic traffic assignment problem, Transport. Sci., 1978, 12, 183–199

    Article  Google Scholar 

  59. Small, K.A., The scheduling of consumer activities: work trips, Am. Econ. Rev., 1982, 72, 467–479

    Google Scholar 

  60. Ran B., Boyce D.E., Modelling dynamic transportation networks: an intelligent transportation system oriented approach, 2nd rev. ed., Springer, Berlin, 1996

    Google Scholar 

  61. Vythoulkas P.C., Two models for predicting dynamic stochastic equilibria in urban transportation networks, In: Koshi M. (Ed.), Proceedings of 11th International Symposium on Transportation and Traffic Theory (July 18–20, Yokohama, Japan), Elsevier, 1990, 253–272

  62. Boyce D.E., Ran B., Li I.Y., Considering travellers’ risk-taking behavior in dynamic traffic assignment, in: Bell M.G.H., Transportation networks: recent methodological advances, Elsevier, Oxford, 1999

    Google Scholar 

  63. Szeto W.Y., Jiang Y, Sumalee A., A cell-based model for multi-class doubly stochastic dynamic traffic assignment, Comput-Aided Civ. Inf., 2011, 26, 595–611

    Article  Google Scholar 

  64. Simon H.A., Models of bounded rationality (Vol. 3), The MIT Press, Cambridge, 1997

    Google Scholar 

  65. Simon H.A., A behavioral model of rational choice, Quart. J. Econ., 1955, 69, 99–118

    Article  Google Scholar 

  66. Simon H.A., Models of Man, Wiley, New York, 1957

    MATH  Google Scholar 

  67. Mahmassani H.S., Chang G.L., On boundedly-rational user equilibrium in transportation systems, Transport. Sci., 1987, 21, 89–99

    Article  Google Scholar 

  68. Szeto W.Y., Lo H.K., Dynamic traffic assignment: properties and extensions, Transportmetrica, 2006, 2, 31–52

    Article  Google Scholar 

  69. Lou Y., Yin Y., Lawphongpanich S., Robust congestion pricing under boundedly rational user equilibrium, Transport. Res. B-Meth., 2010, 44, 15–28

    Article  Google Scholar 

  70. zeto W.Y., Lo H.K., A cell-based simultaneous route and departure time choice model with elastic demand, Transport. Res. B-Meth., 2004, 38, 593–612

    Article  Google Scholar 

  71. Pel A.J., Bliemer M.C.J., Hoogendoorn S.P., Hybrid route choice modeling in dynamic traffic assignment, Transport. Res. Rec., 2009, 2091, 100–107

    Article  Google Scholar 

  72. Kuwahara M., Akamatsu T., Decomposition of the reactive assignments with queues for many-to-many origin-destination pattern, Transport. Res. B-Meth., 1997, 31, 1–10

    Article  Google Scholar 

  73. Ben-akiva M., De Palma A., Kaysi, I., Dynamic network models and driver information system, Transport. Res. A-Pol., 1991, 25, 251–266

    Article  Google Scholar 

  74. Sumalee A., Zhong, R.X., Pan, T.L., Szeto, W.Y., Stochastic cell transmission model (SCTM): a stochastic dynamic traffic model for traffic state surveillance and assignment, Transport. Res. B-Meth., 2011, 45, 507–533

    Article  Google Scholar 

  75. Lo H.K., Szeto W.Y., A cell-based dynamic traffic assignment model: formulation and properties, Math. Comput. Model., 2002, 35, 849–865

    Article  MATH  MathSciNet  Google Scholar 

  76. Tong C.O., Wong S.C., A predictive dynamic traffic assignment model in congested capacity-constrained road networks, Transport. Res. B-Meth., 2000, 34, 625–644

    Article  Google Scholar 

  77. Horowitz J.L., The stability of stochastic equilibrium in a two-link transportation network, Transport. Res. B-Meth., 1984, 18, 13–28

    Article  Google Scholar 

  78. Cascetta E., A stochastic process approach to the analysis of temporal dynamics in transportation networks, Transport. Res. B-Meth., 1989, 23, 1–17

    Article  Google Scholar 

  79. Chang G.L., Mahmassani H., Travel time prediction and departure time adjustment behavior dynamics in a congested traffic system, Transport. Res. B-Meth., 1988, 22, 217–232

    Article  Google Scholar 

  80. Lam W.H.K., Huang H.J., Dynamic user optimal traffic assignment model for many to one travel demand, Transport. Res. B-Meth., 1995, 29, 243–259

    Article  Google Scholar 

  81. Ran B., Boyce D., A link-based variational inequality formulation of ideal dynamic user-optimal route choice problem, Transport. Res. C-Emer., 1996, 4, 1–12

    Article  Google Scholar 

  82. Carey M., Optimal time-varying flows on congested network, Oper. Res., 1987, 35, 58–69

    Article  MATH  MathSciNet  Google Scholar 

  83. Carey M., Srinivasan A., Congested network flows: time-varying demands and start-time policies, Eur. J. Oper. Res., 1988, 36, 227–240

    Article  MATH  MathSciNet  Google Scholar 

  84. Lo H.K., Szeto W.Y., A cell-based variational inequality formulation of the dynamic user optimal assignment problem, Transport. Res. B-Meth., 2002, 36, 421–443

    Article  Google Scholar 

  85. Szeto W.Y., The enhanced lagged cell transmission model for dynamic traffic assignment, Transport. Res. Rec., 2008, 2085, 76–85

    Article  Google Scholar 

  86. Lo H.K., Ran B., Hongola B., Multiclass dynamic traffic assignment model: formulation and computational experiences, Transport. Res. Rec., 1996, 1537, 74–82

    Article  Google Scholar 

  87. Liu Y.H., Mahmassani H.S., Dynamic aspects of commuter decisions under advanced traveler information systems — modeling framework and experimental results, Transport. Res. Rec., 1998, 1645, 111–119

    Article  Google Scholar 

  88. Ben-Akiva M., Cuneo D., Hasan M., Jha M., et al., Evaluation of freeway control using a microscopic simulation laboratory, Transport. Res. C-Emer., 2003, 11, 29–50

    Article  Google Scholar 

  89. Jiang Y.Q., Wong S.C., Ho H.W., Zhang P., et al., A dynamic traffic assignment model for a continuum transportation system, Transport. Res. B-Meth., 2011, 45, 343–363

    Article  Google Scholar 

  90. Hughes R.L., A continuum theory for the flow of pedestrians, Transport. Res. B-Meth., 2002, 36, 507–535

    Article  Google Scholar 

  91. Hoogendoorn S.P., Bovy P.H.L., Dynamic useroptimal assignment in continuous time and space, Transport. Res. B-Meth., 2004, 38, 571–592

    Article  Google Scholar 

  92. Hoogendoorn S.P., Bovy P.H.L., Pedestrian routechoice and activity scheduling theory and models, Transport. Res. B-Meth., 2004, 38, 169–190

    Article  Google Scholar 

  93. Xia Y., Wong S.C., Zhang M., Shu C.W., et al., An efficient discontinuous Galerkin method on triangular meshes for a pedestrian flow model, Int. J. Numer. Meth. Eng., 2008, 76, 337–350

    Article  MATH  MathSciNet  Google Scholar 

  94. Huang L., Wong S.C., Zhang M.P., Shu C.W., et al., Revisiting Hughes’ dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm. Transport. Res. B-Meth., 2009, 43, 127–141

    Article  Google Scholar 

  95. Huang L., Xia Y., Wong S.C., Shu C.W., et al., Dynamic continuum model for bi-directional pedestrian flows, P. I. Civil Eng.: Eng. Comput. Mec., 2009, 162, 67–75

    Google Scholar 

  96. Xia Y., Wong S.C., Shu C.W., Dynamic continuum pedestrian flow model with memory effect, Phys. Rev. E, 2009, 79, 066113

    Article  Google Scholar 

  97. Jiang Y.Q., Xiong T., Wong S.C., Shu C.W., et al., A reactive dynamic continuum user equilibrium model for bi-directional pedestrian flows, Acta. Math. Sci., 2009, 29, 1541–1555

    MATH  MathSciNet  Google Scholar 

  98. Guo R.Y., Huang H.J., Wong S.C., Collection, spillback, and dissipation in pedestrian evacuation: a network-based method, Transport. Res. B-Meth., 2011, 45, 490–506

    Article  Google Scholar 

  99. Xiong T., Zhang M., Shu C.W., Wong S.C., et al., Highorder computational scheme for a dynamic continuum model for bi-directional pedestrian flows, Comput.—Aided Civ. Inf., 2011, 26, 298–310

    Article  Google Scholar 

  100. Nagurney A., Network economics: a variational inequality approach, Kluwer Academic Publishers, Norwell, Massachusetts, 1993

    Book  MATH  Google Scholar 

  101. Chow A.H.F., Properties of system optimal traffic assignment with departure time choice and its solution method, Transport. Res. B-Meth., 2009, 43, 325–344

    Article  Google Scholar 

  102. Chow A.H.F., Dynamic system optimal traffic assignment — a state-dependent control theoretic approach, Transportmetrica, 2009, 5, 85–106

    Article  Google Scholar 

  103. Long J.C., Szeto W.Y., Gao Z.Y., Discretised link travel time models based on cumulative flows: formulations and properties, Transport. Res. B-Meth., 2011, 45, 232–254

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Wong.

About this article

Cite this article

Szeto, W.Y., Wong, S.C. Dynamic traffic assignment: model classifications and recent advances in travel choice principles. cent.eur.j.eng 2, 1–18 (2012). https://doi.org/10.2478/s13531-011-0057-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13531-011-0057-y

Keywords

Navigation