Inhabiting the solar system

Research Article
  • 69 Downloads

Abstract

The new field of space architecture is introduced. Defined as the “theory and practice of designing and building inhabited environments in outer space,” the field synthesizes human space flight systems engineering subjects with the long tradition of making environments that support human living, work, and aspiration. The scope of the field is outlined, and its three principal domains differentiated. The current state of the art is described in terms of executed projects. Foreseeable options for 21st century developments in human space flight provide a framework to tease out potential space architecture opportunities for the next century.

Keywords

Architecture Space architecture Human space flight Space exploration Offworld Space tourism Space manufacturing Habitation Habitat Habitability System engineering System architecture ISS Moon Mars Orbital Simulator Analogue NASA Commercial space Passenger travel Space solar power Space settlement Space colonization Planet Inner Solar System 

References

  1. [1]
    SAW, Millennium Charter, Fundamental Principles of Space Architecture, Space Architecture Workshop, Houston, TX, Oct. 12, 2002, available at http://www.spacearchitect.org/
  2. [2]
    Howe A.S., and Sherwood B., Out of This World: The New Field of Space Architecture, AIAA, 2009Google Scholar
  3. [3]
    Mohanty S., Fairburn S. M., Imhof B., Ransom S., Vogler A., Human-Space-Mission Simulators, 2009, [Howe and Sherwood, op. cit., Chapter 25]Google Scholar
  4. [4]
    Toups L., Cadogan D., Scheir C., Antarctic Habitat Analogue, 2009, [Howe and Sherwood, op. cit., Chapter 26]Google Scholar
  5. [5]
    Broughton H., Halley VI Antarctic Research Station, 2009, [Howe and Sherwood, op. cit., Chapter 27]Google Scholar
  6. [6]
    Nixon D., Ovrum T., Clancy P., Planetary and Lunar Surface Simulator, 2009, [Howe and Sherwood, op. cit., Chapter 28]Google Scholar
  7. [7]
    Adams C., Petrov G., Spaceport Design, 2009, [Howe and Sherwood, op. cit., Chapter 29]Google Scholar
  8. [8]
    Vogler A., Vittori A., Space Architecture for the Mother Ship: Bringing It Home, 2009, [Howe and Sherwood, op. cit., Chapter 30]Google Scholar
  9. [9]
    Kennedy K. J., Vernacular of Space Architecture, 2009, [Howe and Sherwood, op. cit., Chapter 2]Google Scholar
  10. [10]
    Sherwood B., Design Constraints for Orbital Architecture, 2009, [Howe and Sherwood, op. cit., Chapter 3]Google Scholar
  11. [11]
    Sherwood, B., and Toups, L., Design Constraints for Planet Surface Architecture, 2009, [Howe and Sherwood, op. cit., Chapter 14]Google Scholar
  12. [12]
    Heiken G., Vaniman D., French B. M. (eds.), Lunar Source Book, Cambridge Univ. Press, Cambridge, England, U.K., 1991Google Scholar
  13. [13]
    Hartmann W. K., Moons and Planets, 2nd ed., Wadsworth, Belmont, CA, 1983Google Scholar
  14. [14]
    Beatty J. K., O’Leary B., Chaikin A., The New Solar System, Cambridge Univ. Press, Cambridge, England, U.K., 1990Google Scholar
  15. [15]
    Sherwood B., Lunar Base Elements Designed for Robotic Operations, Space 90: Engineering, Construction and Operations, American Society of Civil Engineers, 1990Google Scholar
  16. [16]
    Sherwood B., “Progressive Protocol for Planetary Protection During Joint Human and Robotic Exploration of Mars,” International Astronautical Congress, Paper IAC-04-IAA.3.7.2.10, 2004Google Scholar
  17. [17]
    Nixon D., Okushi J., Alternative Space-Station Module Interiors, 2009, [Howe and Sherwood, op. cit., Chapter 7]Google Scholar
  18. [18]
    Jones R., Performance of the International Space Station Interior, 2009, [Howe and Sherwood, op. cit., Chapter 4]Google Scholar
  19. [19]
    Broyan J. L., Borrego M. A., Bahr J. F., International Space Station Crew Quarters, 2009, [Howe and Sherwood, op. cit., Chapter 5]Google Scholar
  20. [20]
    Fairburn S. M., Retrofitting the International Space Station, 2009, [Howe and Sherwood, op. cit., Chapter 6]Google Scholar
  21. [21]
    Kennedy K. J., TransHab Project, 2009, [Howe and Sherwood, op. cit., Chapter 8]Google Scholar
  22. [22]
    Herman M., Design of a TransHab-based System, 2009, [Howe and Sherwood, op. cit., Chapter 9]Google Scholar
  23. [23]
    Favata P., Space Hotel Based on the TransHab, 2009, [Howe and Sherwood, op. cit., Chapter 10]Google Scholar
  24. [24]
    Sherwood B., Capps S. D., Habitats for Long-Duration Missions, 2009, [Howe and Sherwood, op. cit., Chapter 11]Google Scholar
  25. [25]
    Hall T. W., “SpinDoctor Artificial Gravity Simulator,” 1987; 1999 (original coding 1987/02/14, last rev, 1999/06/22), http://www.artificial-gravity.com/ag/sw/SpinDoctor/
  26. [26]
    Hall T. W., “SpinCalc Artificial Gravity Calculator,” 2000; 2003 (original coding 2000/01/27, last rev. 2003/05/05), http://www.artificial-gravity.com/ag/sw/SpinCalc/
  27. [27]
    Hall T. W., Artificial Gravity, 2009, [Howe and Sherwood, op. cit., Chapter 12]Google Scholar
  28. [28]
    Sherwood B., Orbital Cities, 2009, [Howe and Sherwood, op. cit., Chapter 13]Google Scholar
  29. [29]
    Cohen M. M., Benaroya H., Lunar-Base Structures, 2009, [Howe and Sherwood, op. cit., Chapter 15]Google Scholar
  30. [30]
    Toups L., Kennedy K. J., Lunar Habitat Concepts, 2009, [Howe and Sherwood, op. cit., Chapter 16]Google Scholar
  31. [31]
    Griffin B. N., Lunar Surface Airlocks, 2009, [Howe and Sherwood, op. cit., Chapter 17]Google Scholar
  32. [32]
    Cohen M. M., Tisdale R. A., Habot Concept, 2009, [Howe and Sherwood, op. cit., Chapter 18]Google Scholar
  33. [33]
    Vogler A., Vittori A., Ransom S., Granziera L., Roving Laboratory, 2009, [Howe and Sherwood, op. cit., Chapter 19]Google Scholar
  34. [34]
    Lowe J. D., Flat-Floor Inflatable Structures, 2009, [Howe and Sherwood, op. cit., Chapter 20]Google Scholar
  35. [35]
    Howe A. S., Gibson I., TRIGON Modular Robotic Construction System, 2009, [Howe and Sherwood, op. cit., Chapter 21] 57Google Scholar
  36. [36]
    Lansdorp B., von Bengtson K., Mars Habitat Using Locally Produced Materials, 2009, [Howe and Sherwood, op. cit., Chapter 23]Google Scholar
  37. [37]
    Sherwood B., Lunar-Base Site Design, 2009, [Howe and Sherwood, op. cit., Chapter 22]Google Scholar
  38. [38]
    Sherwood B., Lunar Architecture and Urbanism, 2009, [Howe and Sherwood, op. cit., Chapter 24]Google Scholar
  39. [39]
    Sherwood B., Comparing Options for Human Space Flight, International Astronautical Congress, Prague, Czech Republic, September 2010, IAC-10-E5.3.2Google Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2011

Authors and Affiliations

  1. 1.Strategic Planning and Project Formulation, NASA Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations