, Volume 41, Issue 3, pp 265–277

A palaeotemperature record for the Finnish Lakeland based on microdensitometric variations in tree rings

  • Samuli Helama
  • Matti Vartiainen
  • Jari Holopainen
  • Hanna M. Mäkelä
  • Taneli Kolström
  • Jouko Meriläinen
Research Article


X-ray based tree-ring data of maximum latewood densities (MXD) was combined for south-eastern Finland. This data originated from subfossil and modern pine (Pinus sylvestris L.) materials comprising a continuous dendroclimatic record over the past millennium. Calibrating and verifying the MXD chronologies against the instrumental temperature data showed a promising opportunity to reconstruct warm-season (May through September) temperature variability. A new palaeotemperature record correlated statistically significantly with the long instrumental temperature records in the region and adjacent areas since the 1740s. Comparisons with tree-ring based (MXD and tree-ring width) reconstructions from northern Fennoscandia and northern Finland exhibited consistent summer temperature variations through the Medieval Climate Anomaly, Little Ice Age, and the 20th century warmth. A culmination of the LIA cooling during the early 18th century appeared consistently with the Maunder Minimum, when the solar activity was drastically reduced. A number of coolest reconstructed events between AD 1407 and 1902 were coeval to years of crop failure and famine as documented in the agro-historical chronicles. Results indicate an encouraging possibility of warm-season temperature reconstructions using middle/south boreal tree-ring archives to detail and enhance the understanding of past interactions between humans, ecosystems and the earth.


dendroclimatology geochronology Maunder Minimum Medieval Climate Anomaly Little Ice Age crop failure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahti T, Hämet-Ahti L and Jalas J, 1968. Vegetation zones and their sections in northwestern Europe. Annales Botanici Fennici 3:169–211.Google Scholar
  2. Aniol RW, 1983. Tree-ring analysis using CATRAS. Dendrochronologia 1: 45–53.Google Scholar
  3. Bartholin T, 1987. Dendrochronology in Sweden. Annales Academiae Scientiarum Fennicae 145: 79–88.Google Scholar
  4. Bergsten U, Lindeberg J, Ringdby A and Evans R, 2001. Batch meas-urements of wood density on intact or prepared drill cores using X-ray microdensitometry. Wood Science and Technology 35: 435–452, DOI 10.1007/s002260100106.CrossRefGoogle Scholar
  5. Bradley RS, 1999. Paleoclimatology: reconstructing climates of the Quaternary. London, Academic Press: 613pp.Google Scholar
  6. Bradley RS and Jones PD, 1993. ‘Little Ice Age’ Summer Temperature Variations: Their Nature and Relevance to Recent Global Warming Trends. The Holocene 3(4): 367–376, DOI 10.1177/095968369300300409.CrossRefGoogle Scholar
  7. Briffa KR, Jones PD, Bartholin TS, Eckstein D, Schweingruber FH, Karlén W, Zetterberg P and Eronen M, 1992. Fennoscandian summers from AD 500: temperature changes on short and long timescales. Climate Dynamics 7(3): 111–119, DOI 10.1007/BF00211153.CrossRefGoogle Scholar
  8. Briffa KR, Jones PD, Pilcher JR and Hughes MK, 1988. Reconstructing summer temperatures in northern Fennoscandinavia back to A.D. 1700 using tree-ring data from Scots pine. Arctic and Alpine Research 20(4): 385–394.CrossRefGoogle Scholar
  9. Briffa KR, Jones PD, Schweingruber FH and Osborn TJ, 1998. Influence of Volcanic Eruptions on Northern Hemisphere Summer Temperature over the Past 600 Years. Nature 393: 450–455, DOI 10.1038/30943.CrossRefGoogle Scholar
  10. Briffa KR, Osborn TJ, Schweingruber FH, Jones PD, Shiyatov SG and Vaganov EA, 2002a. Tree ring width and density data around the Northern Hemisphere. Part 1. Local and regional climate signals. The Holocene 12(6): 737–751, DOI 10.1191/0959683602hl587rp.CrossRefGoogle Scholar
  11. Briffa KR, Osborn TJ, Schweingruber FH, Jones PD, Shiyatov SG and Vaganov EA, 2002b. Tree ring width and density data around the Northern Hemisphere. Part 2. Spatio-temporal variability and associated climate patterns. The Holocene 12(6): 759–789, DOI 10.1191/0959683602hl588rp.CrossRefGoogle Scholar
  12. Brugnoli E, Solomina O, Spaccino L and Dolgova E, 2010. Climate signal in the ring width, density and carbon stable isotopes in pine (Pinus silvestris L.) in Central Caucasus. Geography, Environment, Sustainability 3: 4–16.Google Scholar
  13. Büntgen U, Raible CC, Frank D, Helama S, Cunningham L, Hofer D, Nievergelt D, Verstege A, Timonen M, Stenseth NC and Esper J, 2011. Causes and Consequences of Past and Projected Scandinavian Summer Temperatures, 500–2100 AD. PLoS ONE 6(9): e25133, DOI 10.1371/journal.pone.0025133.CrossRefGoogle Scholar
  14. Burg JP, 1978. A new analysis technique for time series data. In: Childers DG, ed, Modern Spectrum Analysis. New York, IEEE Press, 42–48.Google Scholar
  15. Cook ER and Peters K, 1981. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree Ring Bulletin 41: 45–53.Google Scholar
  16. Cook E, Shiyatov S and Mazepa V, 1990. Estimation of the mean chronology. In: Cook E and Kairiukstis LA, eds, Methods of dendrochronology: applications in the environmental science. Dordrecht, Kluwer Academic Publishers, 123–132.CrossRefGoogle Scholar
  17. Ebisuzaki W, 1997. A method to estimate the statistical significance of a correlation when the data are serially correlated. Journal of Climate 10(9): 2147–2153, DOI 10.1175/1520-0442(1997)010〈2147:AMTETS〉2.0.CO;2.CrossRefGoogle Scholar
  18. Eddy JA, 1976. The Maunder Minimum. Science 192: 1189–1202, DOI 10.1126/science.192.4245.1189.CrossRefGoogle Scholar
  19. Efron B and Tibshirani R, 1986. Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy. Statistical Science 1: 54–75, DOI 10.1214/ss/1177013815.CrossRefGoogle Scholar
  20. Eronen M, Hyvärinen H and Zetterberg P, 1999. Holocene humidity changes in northern Finnish Lapland inferred from lake sediments and submerged Scots pines dated by tree rings. The Holocene 9(5): 569–580, DOI 10.1191/095968399677209885.CrossRefGoogle Scholar
  21. Eronen M, Zetterberg P, Briffa KR, Lindholm M, Meriläinen J and Timonen M, 2002. The supralong Scots pine treering record for Finnish Lapland: part 1, chronology construction and initial references. The Holocene 12(6): 673–680, DOI 10.1191/0959683602hl580rp.CrossRefGoogle Scholar
  22. Esper J, Frank DC, Timonen M, Zorita E, Wilson RJS, Luterbacher J, Holzkämper S, Fischer N, Wagner S, Nievergelt D, Verstege A and Büntgen U, 2012. Orbital forcing of tree-ring data. Nature Climate Change 2: 862–866, DOI 10.1038/nclimate1589.CrossRefGoogle Scholar
  23. Fritts HC, 1976. Tree rings and climate. New York, Academic Press: 567pp.Google Scholar
  24. Gordon GA, Gray BM and Pilcher JR, 1982. Verification of dendrocli-matic reconstructions. In: Hughes MK, Kelly PM, Pilcher JR and LaMarche Jr. VC, eds, Climate from Tree Rings. Cambridge, Cambridge University Press, 115–132.Google Scholar
  25. Grissino-Mayer HD and Fritts HC, 1997. The International Tree-Ring Data Bank: an enhanced global database serving the global scientific community. The Holocene 7(2): 235–238, DOI 10.1177/095968369700700212.CrossRefGoogle Scholar
  26. Grudd H, 2008. Torneträsk tree-ring width and density AD 500–2004: a test of climatic sensitivity and a new 1500-year reconstruction of north Fennoscandian summers. Climate Dynamics 31(7–8): 843–857, DOI 10.1007/s00382-007-0358-2.CrossRefGoogle Scholar
  27. Grudd H, Briffa KR, Gunnarson BE and Linderholm HW, 2000. Swedish tree rings provide new evidence in support of a major, wide-spread environmental disruption in 1628 BC. Geophysical Research Letters 27: 2957–2960, DOI 10.1029/1999GL010852.CrossRefGoogle Scholar
  28. Grudd H, Briffa KR, Karlén W, Bartholin TS, Jones PD and Kromer B, 2002. A 7400-year tree-ring chronology in northern Swedish Lapland: natural climatic variability expressed on annual to millennial timescales. The Holocene 12(6): 657–665, DOI 10.1191/0959683602hl578rp.CrossRefGoogle Scholar
  29. Gunnarson BE, Linderholm HW and Moberg A, 2011. Improving a tree-ring reconstruction from west-central Scandinavia: 900 years of warm-season temperatures. Climate Dynamics 36(1–2): 97–108, DOI 10.1007/s00382-010-0783-5.CrossRefGoogle Scholar
  30. Helama S, Arentoft BW, Collin-Haubensak O, Hyslop MD, Brandstrup CK, Mäkelä HM, Tian QH and Wilson R, 2013a. Dendroclimatic signals deduced from riparian versus upland forest interior pines in North Karelia, Finland. Ecological Research 28(6): 1019–1028, DOI 10.1007/s11284-013-1084-3.CrossRefGoogle Scholar
  31. Helama S, Bégin Y, Vartiainen M, Peltola H, Kolström T and Meriläinen J, 2012a. Quantifications of dendrochronological information from contrasting microdensitometric measuring circum-stances of experimental wood samples. Applied Radiation and Isotopes 70(6): 1014–1023, DOI 10.1016/j.apradiso.2012.03.025.CrossRefGoogle Scholar
  32. Helama S, Holopainen J, Macias-Fauria M, Timonen M and Mielikäinen K, 2013b. A chronology of climatic downturns through the mid- and late-Holocene: tracing the distant effects of explosive eruptions from palaeoclimatic and historical evidence in northern Europe. Polar Research 32: 15866, DOI 10.3402/polar.v32i0.15866.CrossRefGoogle Scholar
  33. Helama S, Lindholm M, Meriläinen J, Timonen M and Eronen M, 2005a. Multicentennial ring-width chronologies of Scots pine along north-south gradient across Finland. Tree-ring Research 61: 21–32, DOI 10.3959/1536-1098-61.1.21.CrossRefGoogle Scholar
  34. Helama S, Lindholm M, Timonen M, Meriläinen J and Eronen M, 2002. The supra-long Scots pine tree-ring record for Finnish Lapland: Part 2, interannual to centennial variability in summer tempera-tures for 7500 years. The Holocene 12(6): 681–687, DOI 10.1191/0959683602hl581rp.CrossRefGoogle Scholar
  35. Helama S, Macias Fauria M, Mielikäinen K, Timonen M and Eronen M, 2010a. Sub-Milankovitch solar forcing of past climates: mid and late Holocene perspectives. Geological Society of America Bulletin 122(11–12): 1981–1988, DOI 10.1130/B30088.1.CrossRefGoogle Scholar
  36. Helama S, Makarenko NG, Karimova LM, Kruglun OA, Timonen M, Holopainen J, Meriläinen J and Eronen M, 2009a. Dendroclimatic transfer functions revisited: Little Ice Age and Medieval Warm Period summer temperatures reconstructed using artificial neural networks and linear algorithms. Annales Geophysicae 27(3):1097–1111, DOI 10.5194/angeo-27-1097-2009.CrossRefGoogle Scholar
  37. Helama S, Mielikäinen K, Timonen M and Eronen M, 2008a. Finnish supra-long tree-ring chronology extended to 5634 BC. Norwegian Journal of Geography 62(4): 271–277, DOI 10.1080/00291950802517593.Google Scholar
  38. Helama S, Seppä H, Birks HJB and Bjune AE, 2010b. Reconciling pollen-stratigraphical and tree-ring evidence for high- and low-frequency temperature variability in the past millennium. Quaternary Science Reviews 29(27–28): 3905–3918, DOI 10.1016/j.quascirev.2010.09.012.CrossRefGoogle Scholar
  39. Helama S, Seppä H, Bjune AE and Birks HJB, 2012b. Fusing pollen-stratigraphic and dendroclimatic proxy data to reconstruct summer temperature variability during the past 7.5 ka in subarctic Fennoscandia. Journal of Paleolimnology 48(1): 275–286, DOI 10.1007/s10933-012-9598-1.CrossRefGoogle Scholar
  40. Helama S, Timonen M, Holopainen J, Ogurtsov MG, Mielikäinen K, Eronen M, Lindholm M and Meriläinen J, 2009b. Summer temperature variations in Lapland during the Medieval Warm Period and the Little Ice Age relative to natural instability of thermohaline circulation on multi-decadal and multi-centennial scales. Journal of Quaternary Science 24(5): 450–456, DOI 10.1002/jqs.1291.CrossRefGoogle Scholar
  41. Helama S, Timonen M, Lindholm M, Meriläinen J and Eronen M, 2005b. Extracting long-period climate fluctuations from tree-ring chronologies over timescales of centuries to millennia. International Journal of Climatology 25(13): 1767–1779, DOI 10.1002/joc.1215.CrossRefGoogle Scholar
  42. Helama S, Meriläinen J and Tuomenvirta H, 2009c. Multicentennial megadrought in northern Europe coincided with a global El Niño-Southern Oscillation drought pattern during the Medieval Climate Anomaly. Geology 37(2): 175–178, DOI 10.1130/G25329A.1.CrossRefGoogle Scholar
  43. Helama S, Vartiainen M, Kolström T and Meriläinen J, 2010c. Dendro-chronological investigation of wood extractives. Wood Science and Technology 44(2): 335–351, DOI 10.1007/s00226-009-0293-y.CrossRefGoogle Scholar
  44. Helama S, Vartiainen M, Kolström T, Peltola H and Meriläinen J, 2008b. X-ray microdensitometry applied to subfossil tree-rings: growth characteristics of ancient pines from the southern boreal forest zone in Finland at intra-annual to centennial time-scales. Vegetation History and Archaeobotany 17(6): 675–686, DOI 10.1007/s00334-008-0147-9.CrossRefGoogle Scholar
  45. Henttonen H, 1984. The dependence of annual ring indices on some climatic factors. Acta Forestalia Fennica 186: 1–38.Google Scholar
  46. Holmes RL, 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 43: 69–78.Google Scholar
  47. Holopainen J, 2004. The early climatological records of Turku. Finnish Meteorological Institute, Reports 2004/8: 1–59.Google Scholar
  48. Holopainen J, Helama S, Kajander J M, Korhonen J, Launiainen J, Nevanlinna H, Reissell A and Salonen V-P, 2009. A multiproxy reconstruction of spring temperatures in south-west Finland since 1750. Climatic Change 92(1–2): 213–233, DOI 10.1007/s10584-008-9477-y.CrossRefGoogle Scholar
  49. Hoyt DV and Schatten KH, 1998. Group Sunspot Numbers: A New Solar Activity Reconstruction. Solar Physics 179(1): 189–219, DOI 10.1023/A:1005007527816.CrossRefGoogle Scholar
  50. Jones PD and Lister DH, 2002. The daily temperature record for St. Petersburg (1743–1996). Climatic Change 53(1–3): 253–267, DOI 10.1023/A:1014918808741.CrossRefGoogle Scholar
  51. Jones PD, Melvin TM, Harpham C, Grudd H and Helama S, 2013. Cool North European summers and possible links to explosive volcanic eruptions. Journal of Geophysical Research: Atmospheres 118(12): 6259–6265, DOI 10.1002/jgrd.50513.Google Scholar
  52. Jutikkala E, 2003a. Halla aina uhkana (Frost as a constant threat in agriculture). Suomalaisen Kirjallisuuden Seuran toimituksia 914: 292–299.Google Scholar
  53. Jutikkala E, 2003b. Katovuodet (Crop failure years). Suomalaisen Kirjallisuuden Seuran toimituksia 914: 504–513.Google Scholar
  54. Koprowski M, Przybylak R, Zielski A and Pospieszyńska A, 2012. Tree rings of Scots pine (Pinus sylvestris L.) as a source of information about past climate in northern Poland. International Journal of Biometeorology 56(1): 1–10, DOI 10.1007/s00484-010-0390-5.CrossRefGoogle Scholar
  55. Läänelaid A, 2000. Five pine samples represent climate impact as well as eleven pines. University of Joensuu, Faculty of Forestry, Research Notes 108: 119–128.Google Scholar
  56. Läänelaid A and Eckstein D, 2003. Development of a tree-ring chronology of Scots pine (Pinus sylvestris L.) for Estonia as a dating tool and climatic proxy. Baltic Forestry 9(2): 76–82.Google Scholar
  57. Lappalainen M, 2001. Suomen kansallispuistot. Ulapalta paljakalle (Finland’s National Parks — Seas of Blue, Seas of Green). Metsähallitus, Vantaa: 168 (in Finnish) pp.Google Scholar
  58. Linderholm HW and Gunnarson BE, 2005. Summer temperature variability in central Scandinavia during the last 3600 years. Geografiska Annaler 87A: 231–241, DOI 10.1111/j.0435-3676.2005.00255.x.CrossRefGoogle Scholar
  59. Lindholm M, Meriläinen J and Eronen M, 1998–1999. A 1250-year ring-width chronology of Scots pine for south-eastern Finland, in the southern part of the boreal forest belt. Dendrochronologia 16–17: 183–190.Google Scholar
  60. Ljungqvist FC, Krusic PJ, Brattström G and Sundqvist HS, 2012. Northern Hemisphere temperature patterns in the last 12 centuries. Climate of the Past 8(1): 227–249, DOI 10.5194/cp-8-227-2012.CrossRefGoogle Scholar
  61. Luoto TP and Helama S, 2010. Palaeoclimatological and palaeolimno-logical records from fossil midges and tree-rings: the role of the North Atlantic Oscillation in eastern Finland through the Medieval Climate Anomaly and Little Ice Age. Quaternary Science Reviews 29(17–18): 2411–2423, DOI 10.1016/j.quascirev.2010.06.015.CrossRefGoogle Scholar
  62. Luterbacher J, Rickli R, Xoplaki E, Tinguely C, Beck C, Pfister C and Wanner H, 2001. The Late Maunder Minimum (1675–1715) — A Key Period for Studying Decadal Scale Climatic Change in Europe. Climatic Change 49(4): 441–462, DOI 10.1023/A:1010667524422.CrossRefGoogle Scholar
  63. Macias Fauria M, Grinsted A, Helama S, Moore J, Timonen M, Martma T, Isaksson E and Eronen M, 2010. Unprecedented low twentieth century winter sea ice extent in the Western Nordic Seas since A.D. 1200. Climate Dynamics 34(6): 781–795, DOI 10.1007/s00382-009-0610-z.CrossRefGoogle Scholar
  64. Macias-Fauria M, Grinsted A, Helama S and Holopainen J, 2012. Persistence matters: Estimation of the statistical significance of paleoclimatic reconstruction statistics from autocorrelated time series. Dendrochronologia 30(2): 179–187, DOI 10.1016/j.dendro.2011.08.003.CrossRefGoogle Scholar
  65. Mann ME, Bradley RS and Hughes MK, 1999. Northern Hemisphere Temperatures During the Past Millennium: Inferences, Uncertainties, and Limitations. Geophysical Research Letters 26(6): 759–762, DOI 10.1029/1999GL900070.CrossRefGoogle Scholar
  66. Matthews JA and Briffa KR, 2005. The ‘Little Ice Age’: Reevaluation of an Evolving Concept. Geografiska Annaler 87A: 17–36, DOI 10.1111/j.0435-3676.2005.00242.x.CrossRefGoogle Scholar
  67. Melander KR and Melander G, 1928. Katovuosista Suomessa. In: Krohn K, ed, Oma maa V. Porvoo, Werner Söderström Osakeyhtiö, 350–359 (In Finnish).Google Scholar
  68. Meriläinen J and Timonen M, 2004. Tree-ring data bank of Saima centre for environmental sciences in Savonlinna [Contribution to The International Tree-Ring Data Bank]Google Scholar
  69. Miina J, 2000. Dependence of tree-ring, earlywood and latewood indices of Scots pine and Norway spruce on climatic factors in eastern Finland. Ecological Modelling 132(3): 259–273, DOI 10.1016/S0304-3800(00)00296-9.CrossRefGoogle Scholar
  70. Mikola P, 1950. Tree growth in years of crop failure. Metsätaloudellinen aikakauslehti 67: 204–205.Google Scholar
  71. Moberg A and Bergström H, 1997. Homogenization of Swedish temperature data. Part III: The long temperature records from Uppsala and Stockholm. International Journal of Climatology 17(7): 667–699, DOI 10.1002/(SICI)1097-0088(19970615)17:7〈667::AID-JOC115〉3.0.CO;2-J.CrossRefGoogle Scholar
  72. Osborn TJ, Briffa KR and Jones PD, 1997. Adjusting variance for sample size in tree ring chronologies and other regional mean timeseries. Dendrochronologia 15: 89–99.Google Scholar
  73. Peltola H, Kilpeläinen A, Sauvala K, Räisänen T and Ikonen V-P, 2007. Effects of early thinning regime and tree status on the radial growth and wood density of Scots pine. Silva Fennica 41(3): 489–505, DOI 10.14214/sf.285.CrossRefGoogle Scholar
  74. Schweingruber FH, Bartholin TS, Schär E and Briffa KR, 1988. Radiodensitometric-dendroclimatological conifer chronologies from Lapland (Scandinavia) and the Alps (Switzerland). Boreas 17(4): 559–566, DOI 10.1111/j.1502-3885.1988.tb00569.x.CrossRefGoogle Scholar
  75. Schweingruber FH, Bräker OU and Schär E, 1987. Temperature information from a European dendroclimatological sampling network. Dendrochronologia 5: 9–33.Google Scholar
  76. Schweingruber FH, Briffa KR and Jones PD, 1991. Yearly maps of summer temperatures in western Europe from A.D. 1750 to 1975 and western North America from 1600 to 1982. Results of a radiodensitometrical study on tree rings. Vegetatio 92(1): 5–71, DOI 10.1007/BF00047132.Google Scholar
  77. Shindell DT, Schmidt GA, Mann ME, Rind D and Waple A, 2001. Solar Forcing of Regional Climate Change During the Maunder Minimum. Science 294: 2149–2152, DOI 10.1126/science.1064363.CrossRefGoogle Scholar
  78. Tietäväinen H, Tuomenvirta H and Venäläinen A, 2010. Annual and seasonal mean temperatures in Finland during the last 160 years based on gridded temperature data. International Journal of Climatology 30(15): 2247–2256, DOI 10.1002/joc.2046.CrossRefGoogle Scholar
  79. Virkkala R, Korhonen KT, Haapanen R and Aapala K, 2000. Protected forests and mires in forest and mire vegetation zones in Finland based on the 8th National Forest Inventory. The Finnish Environment 395: 1–49.Google Scholar
  80. Walker MJC, 2005. Quaternary Dating Methods. Chichester, Wiley: 286pp.Google Scholar
  81. Warren WG, 1980. On removing the growth trend from dendrochronological data. Tree Ring Bulletin 40: 35–44.Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Samuli Helama
    • 1
  • Matti Vartiainen
    • 2
  • Jari Holopainen
    • 3
  • Hanna M. Mäkelä
    • 4
  • Taneli Kolström
    • 5
  • Jouko Meriläinen
    • 6
  1. 1.Finnish Forest Research InstituteNorthern UnitRovaniemiFinland
  2. 2.Saima Centre for Environmental SciencesSavonlinnaFinland
  3. 3.Department of Geosciences and GeographyUniversity of HelsinkiHelsinkiFinland
  4. 4.Finnish Meteorological InstituteHelsinkiFinland
  5. 5.Finnish Forest Research InstituteJoensuuFinland
  6. 6.SavonlinnaFinland

Personalised recommendations