, Volume 41, Issue 1, pp 30–35 | Cite as

Thermoluminescence age of quartz xenocrysts in basaltic lava from Oninomi monogenetic volcano, northern Kyushu, Japan

  • Yorinao ShitaokaEmail author
  • Masaya Miyoshi
  • Junji Yamamoto
  • Tomoyuki Shibata
  • Tsuneto Nagatomo
  • Keiji Takemura
Research Article


We determined the eruption age of basaltic rocks by application of thermoluminescence (TL) method, which is often used for TL dating, to quartz. Mafic magma only rarely includes quartz because of their mutual disequilibration. The basaltic lavas reported herein include quartz as xenocrysts, as corroborated by their rounded or anhedral shape.

The basaltic lava used for this study is from the Oninomi monogenetic volcano in northern Kyushu, Japan. The volcano eruption was estimated as occurring 7.3–29 ka because the lava exists between two widespread tephras: Aira-Tanzawa ash (26–29 ka) and Kikai-Akahoya ash (7.3 ka). We succeed-ed in collecting ca. 200 mg of quartz by decomposition of 30 kg of the lava samples. TL measurements for the lava indicate the eruption age as 15.8 ± 2.5 ka, which is fairly consistent with the stratigraphical estimation. Although the TL method has played a considerable part in constraining the timescale of Quaternary events, its application has been limited to silicic samples. The present result demonstrates the availability of quartz for dating even of mafic rock.


Oninomi monogenetic volcano basaltic rocks thermoluminescence dating quartz xenocrysts eruption age 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamiec G and Aitken MJ, 1998. Dose-rate conversion factors: update. Ancient TL 16: 37–50.Google Scholar
  2. Aitken MJ, 1985. Thermoluminescence Dating. Academic Press, London.Google Scholar
  3. Bonde A, Murray A and Friedrich WL, 2001. Santorini: Luminescence dating of a volcanic province using quartz? Quaternary Science Reviews 20(5-9): 789–793, DOI 10.1016/S0277-3791(00)00034-2.CrossRefGoogle Scholar
  4. Chen YG, Wu WS, Chen CH and Liu TK, 2001. A date for volcanic eruption inferred from a siltstone xenolith. Quaternary Science Reviews 20(5–9): 869–873, DOI 10.1016/S0277-3791(00)00047-0.CrossRefGoogle Scholar
  5. Fujisawa Y, Okuno M, Nakamura T and Kobayashi T, 2002. Eruptive activities of Tsurumi volcano in Japan during the past 30,000 years. The Journal of the Geological Society of Japan 108: 48–58. (in Japanese, with English abstract).CrossRefGoogle Scholar
  6. Gillot PY, Valladas G and Reyss JL, 1978. Dating of lava flow using a granitic enclave: Application to the Laschamp magnetic event. PACT (Journal of the European Study Group on Physical, Chemical and Mathematical Techniques Applied to Archaeology) 2: 165–173.Google Scholar
  7. Guerin G and Valladas G, 1980. Thermoluminescence dating of volcanic plagioclases. Nature 286: 697–699, DOI 10.1038/286697a0.CrossRefGoogle Scholar
  8. Ichikawa Y, Hagihara N and Nagatomo T, 1982. Dating of pyroclastic flow deposits using the quartz inclusion method. PACT (Journal of the European Study Group on Physical, Chemical and Mathematical Techniques Applied to Archaeology): 409–416.Google Scholar
  9. Itoh Y, Takemura K and Kamata H, 1998. History of basin formation and tectonic evolution at the termination of a large transcurrent fault system: deformation mode of central Kyushu, Japan. Tecto-nophysics 284(1–2): 135–150, DOI 10.1016/S0040-1951(97)00167-4.Google Scholar
  10. Kanemaki M, Ninagawa K, Yamamoto I, Nakagawa M, Wada T, Yamashita Y and Endo K, 1991. Red thermoluminescence of volcanic glass fractions from tephras. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 18(1–2): 81–88, DOI 10.1016/1359-0189(91)90097-2.CrossRefGoogle Scholar
  11. Kita I, Yamanoto M, Asakawa Y, Nakagawa M, Taguchi S and Hasegawa H, 2001. Contemporaneous ascent of within-plate type and is-land-arc type magmas in the Beppu-Shimabara graben system, Kyushu island, Japan. Journal of Volcanology and Geothermal Research 111(1–4): 99–109, DOI 10.1016/S0377-0273 (01)00222-0.CrossRefGoogle Scholar
  12. Machida H and Arai F, 2003. Atlas of tephra in and around Japan. University of Tokyo Press, Tokyo. (in Japanese).Google Scholar
  13. May RJ, 1977. Thermoluminescence dating of Hawaiian alkalic basalts. Journal of Geophysical Research 82(20): 3023–3029, DOI 10.1029/JB082i020p03023.CrossRefGoogle Scholar
  14. Mejdahl V, 1979. Thermoluminescence dating: beta-dose attenuation in quartz grains. Archaeometry 21(1): 61–73, DOI 10.1111/j.1475-4754.1979.tb00241.x.CrossRefGoogle Scholar
  15. Miallier D, Fain J, Sanzelle S, Pilleyre TH, Montret M, Soumana S and Falguérest C, 1994. Attempts at dating pumice deposits around 580 ka by use of red TL and ESR of xenolithic quartz inclusions. Radiation Measurements 23(2–3): 399–404, DOI 10.1016/1350-4487(94)90070-1.CrossRefGoogle Scholar
  16. Miallier D, Condomines M, Pilleyre T, Sanzelle S and Guittet J, 2004. Concordant thermoluminescence and 238U-230Th ages for a trachytic dome (Grand Sarcoui) from the Chaîne des Puys (French Massif central). Quaternary Science Reviews 23(5–6): 709–715, DOI 10.1016/j.quascirev.2003.06.002.CrossRefGoogle Scholar
  17. Nagatomo T, Shitaoka Y and Kunikita D, 2007. IRSL Dating of the Sediments at the Neolithic Sites in the Russian Far East. Bulletin of Nara University of Education 56(2): 1–6. (in Japanese, with English abstract)Google Scholar
  18. Ohta T, Hasenaka T, Ban M and Sasaki M, 1992. Characteristic Geology and Petrology of non-arc type volcanism at Oninomi monogenetic volcano, Yufu-Tsurumi graben. Bulletin of the Volcanological Society of Japan 37: 119–131. (in Japanese, with English abstract)Google Scholar
  19. Pilleyre Th, Montret M, Fain J, Miallier D and Sanzelle S, 1992. At-tempts at dating ancient volcanoes using the red TL of quartz. Quaternary Science Reviews 11(1–2): 13–17, DOI 10.1016/0277-3791(92)90036-8.CrossRefGoogle Scholar
  20. Prescott JR and Hutton JT, 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations. Radiation Measurements 23(2–3): 497–500, DOI 10.1016/1350-4487(94)90086-8.CrossRefGoogle Scholar
  21. Preusser F, Rufer D and Schreurs G, 2011. Direct dating of quaternary phreatic maar eruptions by luminescence methods. Geology 39(12): 1135–1138, DOI 10.1130/G32345.1.CrossRefGoogle Scholar
  22. Rufer D, Gnos E, Mettier R, Preusser F and Schreurs G, 2012. Proposing new approaches for dating young volcanic eruptions by luminescence methods. Geochronometria 39(1): 48–56, DOI 10.2478/s13386-011-0049-y.CrossRefGoogle Scholar
  23. Sato H, 1975. Diffusion coronas around quartz xenocrysts in andesite and basalt from Tertiary volcanic region in northeastern Shikoku, Japan. Contributions to Mineralogy and Petrology 50(1): 49–64, DOI 10.1007/BF00385221.CrossRefGoogle Scholar
  24. Shitaoka Y, Nagatomo T and Obata N, 2009. Age determination of Ontake Pm1 pumice fall deposit (On-Pm1) by thermolumines-cence method. The Quaternary Research 48: 295–300. (in Japa-nese).CrossRefGoogle Scholar
  25. Straub SM, 2008. Uniform processes of melt differentiation in the central Izu Bonin volcanic arc (NW Pacific). Geological Society, London, Special Publications 304: 261–283, DOI 10.1144/SP304.13.CrossRefGoogle Scholar
  26. Takashima I, Nasution A and Muraoka H, 2002. Thermoluminescence dating of volcanic and altered rocks in the Bajawa geothermal area, central Flores Island, Indonesia. Bulletin of the Geological Survey of Japan 53: 139–142.Google Scholar
  27. Takashima I, Nazari AA, Lim PS, Koseki T, Mouri Y, Nasution A and Eddy Sucipta IGB, 2004. Thermoluminescence age determination of quaternary volcanic rocks and alteration products at Tawau area, Sabah, Malaysia. Journal of the Geothermal Research Society of Japan 26(3): 273–283.Google Scholar
  28. Tamura Y, 1994. Genesis of island arc magmas by mantle-derived bimodal magmatism: evidence from the Shirahama group. Japan. Journal of Petrology 35(3): 619–645, DOI 10.1093/petrology/35.3.619.CrossRefGoogle Scholar
  29. Tsukamoto S, Duller GAT, Wintle AG and Muhs D, 2011. Assessing the potential for luminescence dating of basalts. Quaternary Geo-chronology 6(1): 61–70, DOI 10.1016/j.quageo.2010.04.002.Google Scholar
  30. Wintle AG, 1973. Anomalous Fading of Thermo-luminescence in Mineral Samples. Nature 245(5421): 143–144, DOI 10.1038/245143a0.CrossRefGoogle Scholar
  31. Yamamoto J, Nishimura K, Sugimoto T, Takemura K, Takahata N and Sano Y, 2009. Diffusive fractionation of noble gases in mantle with magma channels: Origin of low He/Ar in mantle-derived rocks. Earth and Planetary Science Letters 280(1–4): 167–174, DOI 10.1016/j.epsl.2009.01.029.CrossRefGoogle Scholar
  32. Yoder HS and Tilley CE, 1962. Origin of basalt magmas: an experimental study of natural and synthetic rock systems. Journal of Petrology 3(3): 342–532, DOI 10.1093/petrology/3.3.342.CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  • Yorinao Shitaoka
    • 1
    Email author
  • Masaya Miyoshi
    • 2
  • Junji Yamamoto
    • 3
  • Tomoyuki Shibata
    • 1
  • Tsuneto Nagatomo
    • 4
  • Keiji Takemura
    • 1
  1. 1.Institute for Geothermal SciencesKyoto UniversityBeppuJapan
  2. 2.Faculty of Education and Regional studiesUniversity of FukuiFukuiJapan
  3. 3.The Hokkaido University Museum, Hokkaido UniversitySapporoJapan
  4. 4.Faculty of EducationNara University of EducationTakabatake, NaraJapan

Personalised recommendations