, Volume 41, Issue 1, pp 104–110 | Cite as

Sub-fossil wood from the Rucianka raised bog (NE Poland) as an indicator of climatic changes in the first millennium BC

  • Joanna Barniak
  • Marek Krąpiec
  • Leszek Jurys
Research Article


The dendrochronological studies were carried out on very well preserved sub-fossil pine wood found in the biogenic deposits of the Rucianka raised bog (NE Poland). Local floating chronologies, covering the period 990-460 cal BC, were dated on the basis of radiocarbon analyses. Growth depressions in annual treering widths indicated periodical deterioration of the environmental conditions, which affected tree growth. Identified germination and dying-off phases (GDO) should be related to the wetter climatic periods. The extinction of trees took place during periods of higher groundwater level which, in turn, caused favourable conditions for growth of young pines.


dendrochronology subfossil wood Pinus sylvestris Holocene NE Poland 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baillie MGL and Brown DM, 1996. Dendrochronology of Irish Bog-Trackways. In: Raftery B, eds., Trackway excavations in the Mountdillon Bogs, Co. Longford. Irish Archaeological Wetland Unit, Transactions vol. 3, Dept. Of Archaeology, University Colege, Dublin, 395–402.Google Scholar
  2. Baillie MGL and Pilcher JR, 1973. A simple cross dating program for tree-ring research. Tree-Ring Bulletin 33: 7–14.Google Scholar
  3. Becker B, 1981. Fällungsdaten römischer Bauhölzer anhand einer 2350-jährigen Süddeutschen Eichen-Jahrringchronologie (A 2350-year south German oak tree-ring chronology). Fundberichte aus Baden-Württemberg 6: 369–386 (in German).Google Scholar
  4. Bridge MC, Haggart BA and Lowe JJ, 1990. The history and palaeoclimatic significance of subfossil remains of Pinus sylvestris in blanket peats from Scotland. Journal of Ecology 78: 77–99.CrossRefGoogle Scholar
  5. Bronk Ramsey C, 2001. Development of the radiocarbon calibration program. Radiocarbon 43(2A): 355–363.Google Scholar
  6. Bronk Ramsey C, 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51: 337–360.Google Scholar
  7. Bronk Ramsey C, van der Plicht J and Weninger B, 2001. “Wigglematching” radiocarbon dates. Radiocarbon 43(2A): 381–89.Google Scholar
  8. Eckstein J, Leuschner HH and Bauerochse A, 2011. Mid-Holocene pine woodland phases and mire development — significance of dendroecological data from subfossil trees from northwest Germany. Journal of Vegetation Science 22: 781–794.CrossRefGoogle Scholar
  9. Eckstein J, Leuschner HH, Bauerochse A, Sass-Klaassen U, 2009. Subfossil bog-pine horizons document climate and ecosystem changes during the Mid-Holocene. Dendrochronologia 27(2): 129–146, DOI 10.1016/j.dendro.2009.06.007.CrossRefGoogle Scholar
  10. Edvardsson J, Leuschner HH, Linderson H, Linderholm HW and Hammarlund D, 2012. South Swedish bog pines as indicators of Mid-Holocene climate variability. Dendrochronologia 30(2): 93–103, DOI 10.1016/j.dendro.2011.02.003.CrossRefGoogle Scholar
  11. Holmes RL, 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 43: 69–78.Google Scholar
  12. Kalicki T, 2006. Zapis zmian klimatu oraz działalności człowieka i ich rola w holoceńskiej ewolucji dolin środkowoeuropejskich (Reflection of climatic changes and human activity and their role in the Holocene evolution of Central European Valley). Prace Geograficzne PAN 204 (in Polish).Google Scholar
  13. Krawczyk A and Krąpiec M, 1995. Dendrochronologiczna baza danych. Materiały II Krajowej Konferencji: Komputerowe wspomaganie badań naukowych (Dendrochronological database. Proceedings of the Polish Conference on Computer Assistance to Scientific Research). Wrocław: 247–252 (in Polish).Google Scholar
  14. Krąpiec M, 1992. Skale dendrochronologiczne późnego holocenu południowej i centralnej Polski (Late Holocene dendrochronological scales of southern and central Poland). Geologia 18(3): 37–119 (in Polish).Google Scholar
  15. Krąpiec M and Walanus A, 2011. Application of the triplephotomultiplier liquid spectrometer Hidex 300 SL in radiocarbon dating. Radiocarbon 53(3): 543–550.Google Scholar
  16. Lamentowicz M, Jęśko M, Miotk-Szpiganowicz G and Goslar T, 2010. Paleohydrologia torfowiska bałtyckiego Stążki (Pojezierze Kaszubskie) w okresie 5300BC — 950 AD — rozwój torfowiska i zmiany klimatyczne (Palaeohydrology of Stążki Balitc bog (Kaszuby Lakeland) in period 5300 BC — 950 AD — peatland development and climatic change). Studia Limnologica et Telmatologica 4(1): 13–27 (in Polish).Google Scholar
  17. Leuschner HH, 1992. Subfossil trees. In: Bartholin TS, Berglund BE, Eckstein D, Schweingruber FH eds., Proc. Symposium “Tree Rings and Environment”, Lundqua Report 34: 193–197.Google Scholar
  18. Leuschner HH, Sass-Klassen U, Jansma E, Baillie MGL and Spurk M, 2002. Subfossil European bog oaks: population dynamics and long term growth depressions as indicators of changes in the Holocene hydroregime and climate. The Holocene 12(6): 695–706, DOI 10.1191/0959683602hl584rp.CrossRefGoogle Scholar
  19. Leuschner HH and Sass-Klaassen U, 2003. Subfossil oaks from bogs in NW Europe as a (dendro)archaeological archive. In: Proceedings of the Peatland Conference 2002 — Leidorf, Germany: Rahden/Westf., 2003.Google Scholar
  20. Moir AK, Leroy SAG, Brown D and Collins PEF, 2010. Dendrochronological evidence for a lower water-table on peatland around 3200-3000BC from subfossil pine in northern Scotland. The Holocene 20(6): 931–942, DOI 10.1177/0959683610365935.CrossRefGoogle Scholar
  21. Pawłat H, 1996. Ocena oddziaływania projektowanej eksploatacji torfu i rekultywacji potorfi obiektu “Rucianka” na środowisko przyrodnicze. Ocena Oddziaływania Inwestycji na Środowisko, (Environmental impact evaluation of the peat mining and reclamation of the post-mining pits at the Rucianka peat-bog. Evaluation of the investment environmental impact). Warszawa (in Polish).Google Scholar
  22. Pearson GW, 1986. Precise calendrical dating of know growth-period samples using a “curve fitting” technique. Radiocarbon 28(2A): 292–299.Google Scholar
  23. Piksryte R, 1996. Dendrochronological study on palaeowoodland dynamics in western Lithuanian peat-bog. Geochronometria 13: 203–214.Google Scholar
  24. Pilcher JR, Baillie MGL, Brown DM, McCormac FG, Macsweeney PB and McLawrence AS, 1995. Dendrochronology of subfossil pine in the North of Ireland. Journal of Ecology 83: 665–671.CrossRefGoogle Scholar
  25. Pukienė R, 2001. Natural changes in bog vegetation reconstructed by sub-fossil tree remnant analysis. Biologija 2: 111–113.Google Scholar
  26. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J and Weyhenmeyer CE, 2009. INTCAL 09 and MARINE09 radiocarbon age calibration curves, 0-50,000 years Cal BP. Radiocarbon 51(4): 1111–1150.Google Scholar
  27. Sass-Klaassen U and Hanraets E, 2006. Woodlands of the past — The excavations of wetland woods at Zwolle-Stadshagen (the Nether-lands): Growth pattern and population dynamics of oak and ash. Netherlands Journal of Geosciences — Geologie en Mijnbouw (85-1): 61–71.Google Scholar
  28. Schweingruber FH, 1988. Tree Rings. Basics and applications of dendrochronology. Dordrecht, Kluwer: 276pp.Google Scholar
  29. Skripkin VV and Kovalyukh NN, 1994. An universal technology for oxidation of carbon-containing materials for radiocarbon dating. Conference on Geochronology and Dendrochronology of Old Town’s and Radiocarbon Dating of Archaeological Findings. 31 October–4 November 1994, Vilnius University Press. 37–42.Google Scholar
  30. Walanus A, 2005. Program Quercus. Instrukcja obsługi. (Quercus program. Manual user). Kraków (in Polish).Google Scholar
  31. Walanus A, 2009. Zdolność rozdzielcza metody radiowęglowej (Sensitivity, accuracy and precision of radiocarbon metod). Przegląd Geologiczny 57(11): 961–963 (in Polish).Google Scholar
  32. Ważny T, 2001. Dendrochronologia obiektów zabytkowych w Polsce (Dendrochronological dating dating of historical objects in Poland). Muzeum Archeologiczne w Gdańsku, Gdańsk: 137pp (in Polish).Google Scholar
  33. Zielski A and Krąpiec M, 2004. Dendrochronologia (Dendrochronology). PWN, Warszawa: 328pp (in Polish).Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Faculty of Geology, Geophysics and Environmental ProtectionAGH-University of Science and TechnologyCracowPoland
  2. 2.Marine Geology Branch in Gdańsk-OliwaPolish Geological Institute — National Research InstituteGdańskPoland

Personalised recommendations