, Volume 39, Issue 2, pp 122–132 | Cite as

Frequency of fast geomorphological processes in high-gradient streams: case study from the Moravskoslezské Beskydy Mts (Czech Republic) using dendrogeomorphic methods

  • Karel ŠilhánEmail author
Research Article


High-gradient streams are localities with the most dynamic activity of geomorphological processes in medium-high mountains. This study of the frequency of floods and debris flows in a selected high-gradient stream in the Moravskoslezské Beskydy Mts was based on a dendrogeomorphic approach. It makes use of the most accurate methods applied in the dating of historic geomorphological processes. Individual events were reconstructed on the basis of the dating of various growth disturbances displayed in 99 samples taken from 56 predominantly broad-leaved trees.

As for the studied area, 26 years out of the last 113 years have been identified as years of rapid geomorphological processes. The frequency of the processes has been high above average since the 1970s. A majority of the events can be considered as flash floods. Debris flows, which can only be observed sporadically, originate due to the reactivation of old accumulation material that subsequently ends up re-accumulated on the alluvial fan at the mouth of a stream. A large number of events occur in connection with extreme short-term precipitation in summer months. In addition, they are affected by fast snow melting in spring, which has also been proved by intra-seasonal dating of selected events.


dendrogeomorphology high-gradient stream debris flow flood Moravskoslezské Beskydy Mts 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alestalo J, 1971. Dendrochronological interpretation of geomorphic processes. Fennia 105: 1–139.Google Scholar
  2. Bollschweiler M, Stoffel M and Schneuwly DM, 2008. Dynamics in debris-flow activity on a forested cone — A case study using different dendroecological approaches. Catena 72: 67–78, DOI 10.1016/j.catena.2007.04.004.CrossRefGoogle Scholar
  3. Bollschweiler M and Stoffel M, 2010a. Tree rings and debris flows: recent developments, future directions. Progress in Physical Geography 34: 625–645, DOI 10.1177/0309133310370283.CrossRefGoogle Scholar
  4. Bollschweiler M and Stoffel M, 2010b. Variations in debris-flow occurrence in an Alpine catchment — A reconstruction based on tree rings. Global and Planetary Change 73: 186–192, DOI 10.1016/j.gloplacha.2010.05.006.CrossRefGoogle Scholar
  5. Bollschweiler M, Stoffel M and Schläppy R, 2011. Debris-flood reconstruction in a pre-alpine catchment in Switzerland based on tree-ring records of coniferous and broadleaved trees. Geografiska Annaler A 93: 1–15, DOI 10.1111/j.1468-0459.2011.00001.x.CrossRefGoogle Scholar
  6. Brázdil R, Březina L, Dobrovolný P. Dobrovský M, Halásová O, Hostýnek J, Chromá K, Janderková J, Kaláb Z, Keprtová K, Kirchner K, Kotyza O, Krejčí O, Kunc J, Lacina J, Lepka Z, Létal A, Macková J, Máčka Z, Mulíček O, Roštínský P, Řehánek T, Seidenglanz D, Semerádová D, Sokol Z, Soukalová E, Štekl J, Trnka M, Valášek H, Věžník A, Voženílek V and Žalud Z, 2007. Vybrané přírodní extrémy a jejich dopady na Moravě a ve Slezsku (Selected natural extremes and their impacts in Moravia and Silesia). Brno, Praha, Ostrava, Masarykova universita, Český hydrometeorologický ústav, Ústav geoniky Akademie věd ČR: 432pp (in Czech).Google Scholar
  7. Gottesfeld AS and Johnson-Gottesfeld LM, 1990. Floodplain dynamics of a wandering river, dendrochronology of the Morice River, British Columbia, Canada. Geomorphology 3: 159–179, DOI 10.1016/0169-555X(90)90043-P.CrossRefGoogle Scholar
  8. Hrádek M and Malik I, 2007. Dendrochronological records of the floodplain morphology transformation of Desná river Halley in the last 150 years, The Hrubý Jeseník Mts. (Czech republic). Moravian Geographical reports 15: 2–15.Google Scholar
  9. Hupp CR and Bazemore DE, 1993. Temporal and spatial patterns of wetland sedimentation, West Tennessee. Journal of Hydrology 141: 179–196, DOI 10.1016/0022-1694(93)90049-F.CrossRefGoogle Scholar
  10. Larsen IJ, Pederson JL and Schmidt JC, 2006. Geologic versus wildfire controls on hillslope processes and debris flow initiation in the Green River canyons of Dinosaur National Monument. Geomorphology 81: 114–127, DOI 10.1016/j.geomorph.2006.04.002.CrossRefGoogle Scholar
  11. Lehotský M, Novotný J, Szmańda JB and Fresková A, 2010. A suburban inter-dike river reach of a large river: Modern morphological and sedimentary changes (the Bratislava reach of the Danube River, Slovakia). Geomorphology 117: 298–308, DOI 10.1016/j.geomorph.2009.01.018.CrossRefGoogle Scholar
  12. Malik I, 2006. Gully erosion dating means of anatomical changes in exposed roots (Proboszczowicka plateau, southern Poland). Geochronometria 25: 57–66.Google Scholar
  13. Malik I and Owczarek P, 2009. Dendrochronological records of debris flow and avalanche activity in a mid-mountain forest zone (eastern Sudetes — central Europe). Geochronometria 34: 57–66, DOI 10.2478/v10003-009-0011-7.CrossRefGoogle Scholar
  14. Mayer B, Stoffel M, Bollschweiler M, Hübl J and Rudolf-Miklau F, 2010. Frequency and spread of debris floods on fans: A dendrogeomorphic case study from a dolomite catchment in the Austrian Alps. Geomorphology 118: 199–206, DOI 10.1016/j.geomorph.2009.12.019.CrossRefGoogle Scholar
  15. Menčík E, Adamová M, Dvořák J, Dudek A, Jetel J, Jurková A, Hanzlíková E, Houša V, Peslová H, Rybářová L, Šmíd B, Šebesta J, Tyráček J and Vašíček Z, 1983. Geologie Moravskoslezských Beskyd a Podbeskydské pahorkatiny (Geology of the Moravskoslezské Beskydy Mts and the Podbeskydská upland). Praha, Ústřední ústav geologický: 304pp (in Czech).Google Scholar
  16. Pánek T, Hradecký J, Minár J, Hungr O and Dušek R, 2009. Late Holocene catastrophic slope collapse affected by deep-seated gravitational deformation in flysch: Ropice Mountain, Czech Republic. Geomorphology 103: 414–429, DOI 19.1016/j.geomorph.2008.07.012.CrossRefGoogle Scholar
  17. Pelfini M and Santilli M, 2008. Frequency of debris flows and their relation with precipitation: A case study in the Central Alps, Italy. Geomorphology 101: 721–730, DOI 10.1016/j.geomorph.2008.04.002.CrossRefGoogle Scholar
  18. Perret S, Stoffel M and Kienholz H, 2006. Spatial and temporal rockfall activity in a forest stand in the Swiss Prealps — A dendrogeomorphological case study. Geomorphology 74: 219–231, DOI: 10.1016/j.geomorph.2005.08.009.CrossRefGoogle Scholar
  19. Ruiz-Villanueva V, Díez-Herrero A, Stoffel M, Bollschweiler M, Bodoque JM and Ballesteros JA, 2010. Dendrogeomorphic analysis of flash floods in a small ungauged mountain catchment (Central Spain). Geomorphology 118: 383–392, DOI10.1016/j.geomorph.2010.02.006.CrossRefGoogle Scholar
  20. Shroder JF, 1978. Dendrogeomorphological analysis of mass movement on Table Cliffs Plateau, Utah. Quaternary Research 9: 168–185, DOI 10.1016/0033-5894(78)90065-0.CrossRefGoogle Scholar
  21. Schneuwly DM and Stoffel M, 2008. Tree-ring based reconstruction of the seasonal timing, major events and origin of rockfall on a case-study slope in the Swiss Alps. Natural Hazards and Earth System Sciences 8: 203–211.CrossRefGoogle Scholar
  22. Schweingruber FH, Eckstein D, Serre-Bachet F and Braker OU, 1990. Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia 8: 9–38.Google Scholar
  23. Schweingruber FH, 1996. Tree rings and environment, dendroecology. Wien, Haupt Verlag: 609pp.Google Scholar
  24. Stoffel M and Bollschweiler M, 2008. Tree-ring analysis in natural hazards research — an overview. Natural hazards and earth system sciences 8: 187–202.CrossRefGoogle Scholar
  25. Šilhán K and Pánek T, 2010. Fossil and recent debris flows in medium-high mountains (Moravskoslezské Beskydy Mts, Czech Republic). Geomorphology 124: 238–249, DOI 10.1016/j.geomorph.2010.03.026.CrossRefGoogle Scholar
  26. Šilhán K, Brázdil R, Pánek T, Dobrovolný P, Kašičková L, Tolasz R, Turský O and Václavek M, 2011. Evaluation of meteorological controls of reconstructed rockfall activity in the Czech Flysch Carpathians. Earth Surface Processes and Landforms 36: 1898–1909, DOI 10.1002/esp.2211.CrossRefGoogle Scholar
  27. Van Den Eeckhaut M, Muys B, Van Loy K, Poesen J and Beeckman H, 2009. Evidence for repeated re-activation of old landslides under forest. Earth Surface Processes and Landforms 34: 352–365, DOI 10.1002/esp.1727.CrossRefGoogle Scholar
  28. V.I.A.S., 2005. Vienna Institute of Archaeological Science, Time Table. Installation and instruction manual. Ver. 2.1, ViennaGoogle Scholar
  29. Zielonka T, Holeksa J and Ciapała S, 2008. A reconstruction of flood events using scarred trees in the Tatra Mountains, Poland. Dendrochronologia 26: 173–183, DOI 10.1016/j.dendro.2008.06.003.CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2011

Authors and Affiliations

  1. 1.Department of Physical Geography and GeoecologyUniversity of OstravaOstrava - Slezská OstravaCzechoslovakia

Personalised recommendations