Advertisement

Geochronometria

, Volume 38, Issue 3, pp 209–216 | Cite as

Preliminary results towards the equivalence of transformed continuous-wave Optically Stimulated Luminescence (CW-OSL) and linearly-modulated (LM-OSL) signals in quartz

  • George Kitis
  • George S. PolymerisEmail author
  • Nafiye G. Kiyak
  • Vasilis Pagonis
Article
  • 46 Downloads

Abstract

The present paper presents a comparative experimental study of two commonly measured Optically Stimulated Luminescence (OSL) signals in quartz. The experimental study measures both the continuous wave OSL (CW-OSL) and the linearly modulated (LM-OSL) signals from the same quartz sample for a range of stimulation temperatures between 180 and 280°C, while the former is transformed to pseudo LM-OSL (ps LM-OSL). A computerized deconvolution curve analysis of the LM-OSL and ps LM-OSL signals was carried out, and the contributions of several OSL components to the initial OSL signal (0.1 s) were shown to be independent of the stimulation temperature used during the measurement. It was also found that the composite OSL (0.1 s) signal consists mainly of the first two OSL components present in the OSL curves. The equivalence of the ps LM-OSL (transformed CW-OSL) and of LM-OSL measurements was also examined by an appropriate choice of the experimental stimulation times, and of the stimulation power of the blue LEDs used during the measurement.

Keywords

OSL transformed CW-OSL LM-OSL pseudo LM-OSL quartz dating OSL components computerized OSL analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey RM, Smith BW, Rhodes EJ, 1997. Partial bleaching and the decay form characteristics of quartz OSL. Radiation Measurements 27(2): 123–136, DOI 10.1016/S1350-4487(96)00157-6.CrossRefGoogle Scholar
  2. Balian HM, Eddy NW, 1977. Figure-of-merit (FOM): An improved criterion over the normalized Chi-squared test for assessing goodness-of-fit of gamma-ray spectral peaks. Nuclear Instruments and Methods 145(2): 389–395, DOI 10.1016/0029-554X(77)90437-2.CrossRefGoogle Scholar
  3. Bøtter-Jensen L, McKeever SWS and Wintle AG, 2003. Optically Stimulated Luminescence Dosimetry. Elsevier, Amsterdam: 336 ppGoogle Scholar
  4. Bulur E, 1996. An alternative technique for optically stimulated luminescence (OSL) experiment. Radiation Measurements 26(5): 701–709, DOI 10.1016/S1350-4487(97)82884-3.CrossRefGoogle Scholar
  5. Bulur E, Bøtter-Jensen L and Murray AS, 2000. Optically stimulated luminescence from quartz measured using the linear modulation technique. Radiation Measurements 32(5–6): 407–411, DOI 10.1016/S1350-4487(00)00115-3.CrossRefGoogle Scholar
  6. Chithambo M L and Galloway R B, 2001. On the slow component of luminescence stimulated from quartz by pulsed blue light-emitting diodes. Nuclear Instruments and Methods in Physics Research, Section B 183(3–4): 358–368, DOI 10.1016/S0168-583X(01)00694-2.CrossRefGoogle Scholar
  7. Jain M and Lindvold LR, 2007. Blue light stimulation and linearly modulated optically stimulated luminescence. Ancient TL 25: 69–80.Google Scholar
  8. Jain M, Murray AS and Bøtter-Jensen L, 2003. Characterisation of blue light stimulated luminescence components in different quartz samples: implications for dose measurement. Radiation Measurements 37(4–5): 441–449, DOI 10.1016/S1350-4487(03)00052-0.CrossRefGoogle Scholar
  9. James F and Roos M, 1977. MINUIT, CERN program library entry D506 http://consult.cern.ch/writeups/minuit.
  10. Huntley DJ, 2006. Thoughts arising from “Choi, Duller and Wintle: analysis of quartz LM-OSL curves. Ancient TL 24, 9–20 (2006).” Ancient TL 24: 69–70.Google Scholar
  11. Kitis G, Furetta C and Pagonis V, 2009. Mixed order kinetics model for optically stimulated luminescence. Modern Physics Letters B 23(27): 3191–3207,.DOI 10.1142/S0217984909021351.CrossRefGoogle Scholar
  12. Kitis G and Pagonis V, 2008. Computerized curve deconvolution analysis for LM-OSL. Radiation Measurements 43(2–6): 737–741, DOI 10.1016/j.radmeas.2007.12.055.CrossRefGoogle Scholar
  13. Kitis G, Polymeris GS and Kiyak NG, 2007. Component resolved thermal stability and recuperation study of the LM-OSL curves of four sedimentary quartz samples. Radiation Measurements 42(8): 1273–1279, DOI 10.1016/j.radmeas.2007.05.050.CrossRefGoogle Scholar
  14. Kiyak NG and Canel T, 2006. Equivalent dose in quartz from young samples using the SAR protocol and the effect of preheat temperature. Radiation Measurements 41(7–8): 917–922, DOI 10.1016/j.radmeas.2006.04.006.CrossRefGoogle Scholar
  15. Kiyak NG, Polymeris GS and Kitis G, 2007. Component resolved OSL dose response and sensitization of various sedimentary quartz samples. Radiation Measurements 42(2): 144–155,.DOI 10.1016/j.radmeas.2007.02.052.CrossRefGoogle Scholar
  16. Kiyak NG, Polymeris GS and Kitis G, 2008. LM-OSL thermal activation curves of quartz: relevance to the thermal activation of the 110°C TL glow-peak. Radiation Measurements 43(2–6): 263–268, DOI 10.1016/j.radmeas.2007.12.039.CrossRefGoogle Scholar
  17. Kuhns CK, Agersnap Larsen N, McKeever, SWS, 2000. Characteristics of LM-OSL from several different types of quartz. Radiation Measurements 32(5–6): 413–418, DOI 10.1016/S1350-4487(00)00065-2.CrossRefGoogle Scholar
  18. Liritzis I, Galoway RB and Hong DG, 1997. Single aliquot of ceramics by green light stimulation of luminescence from quartz. Nuclear Instruments and Methods in Physics Research B 132(3): 457–467, DOI 10.1016/S0168-583X(97)00456-4.CrossRefGoogle Scholar
  19. Murray AS and Wintle AG, 1999. Isothermal decay of optically stimulated luminescence in quartz. Radiation Measurements 30(1): 119–125, DOI 10.1016/S1350-4487(98)00097-3.CrossRefGoogle Scholar
  20. Polymeris GS, Tsirliganis, NC, Loukou Z and Kitis G, 2006. A comparative study of anomalous fading effects of TL and OSL signals of Durango apatite. Physica Status Solidi A 203(3): 578–590, DOI 10.1002/pssa.200521347.CrossRefGoogle Scholar
  21. Polymeris GS, Kiyak NG and Kitis G, 2008. Component resolved bleaching study of the blue LM-OSL signal of various quartz samples. Geochronometria 32: 79–85, DOI 10.2478/v10003-008-0028-3.CrossRefGoogle Scholar
  22. Polymeris GS, Afouxenidis D, Tsirliganis NC and Kitis G, 2009. The TL and room temperature OSL properties of the glow peak at 110°C in natural milky quartz: A case study. Radiation Measurements 44(1): 23–31, DOI 10.1016/j.radmeas.2008.10.007.CrossRefGoogle Scholar
  23. Poolton NRJ, Bøtter-Jensen, L., Andersen CE, Jain M, Murray AS, Malins AER and Quinn FM, 2003. Measuring modulated luminescence using non-modulated stimulation: ramping the sampling period. Radiation Measurements 37(6): 639–645, DOI 10.1016/S1350-4487(03)00244-0.CrossRefGoogle Scholar
  24. Singarayer JS and Bailey RM, 2003. Further investigations of the quartz optically stimulated luminescence components using linear modulation. Radiation Measurements 37(4–5): 451–458, DOI 10.1016/S1350-4487(03)00062-3.CrossRefGoogle Scholar
  25. Singarayer JS and Bailey RM, 2004. Component-resolved bleaching spectra of quartz optically stimulated luminescence: preliminary results and implications for dating. Radiation Measurements 38(1): 111–118, DOI 10.1016/S1350-4487(03)00250-6.CrossRefGoogle Scholar
  26. Wallinga J, Bos AJJ and Duller GAT, 2008. On the separation of quartz OSL signal components using different stimulation modes. Radiation Measurements 43(2–6): 742–747, DOI 10.1016/j.radmeas.2008.01.013.CrossRefGoogle Scholar
  27. Wintle AG and Murray AS, 1999. Luminescence sensitivity changes in quartz. Radiation Measurements 30(1): 107–118, DOI 10.1016/S1350-4487(98)00096-1.CrossRefGoogle Scholar
  28. Wintle AG and Murray AS, 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements 41(4): 369–391, DOI 10.1016/j.radmeas.2005.11.001.CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2011

Authors and Affiliations

  • George Kitis
    • 1
  • George S. Polymeris
    • 2
    Email author
  • Nafiye G. Kiyak
    • 2
  • Vasilis Pagonis
    • 3
  1. 1.Nuclear Physics LaboratoryAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Faculty of Science and Arts, Physics DepartmentIŞIK UniversityŞileIstanbul, Turkey
  3. 3.Physics DepartmentMcDaniel CollegeWestminsterUSA

Personalised recommendations