Geochronometria

, Volume 38, Issue 1, pp 55–63

Combined dating methods applied to building archaeology: The contribution of thermoluminescence to the case of the bell tower of St Martin’s church, Angers (France)

  • S. Blain
  • P. Guibert
  • D. Prigent
  • P. Lanos
  • C. Oberlin
  • C. Sapin
  • A. Bouvier
  • P. Dufresne
Article
  • 84 Downloads

Abstract

St Martin’s church, Angers, is emblematic of the problems raised in pre-12th century history of architecture.

In view of the importance of this building, it was necessary to attempt to define its dating and this study particularly focuses on its bell-tower. In addition to the conclusion resulting from the interpretation of written sources and typological criteria positioning the construction of the site at the beginning of the 11th century, not only a significant number of 14C dates were carried out on charcoals from the masonry structures, but also independent dating by archaeomagnetism and thermoluminescence were performed on bricks from the bell-tower. The whole results from these three different methods agree and indicate the lower level of the bell-tower was likely built in the 9th century, disputing evidence to the theory of construction in the 11th century of the church.

Presented here are the detailed results obtained from the thermoluminescence (TL) dating analysis.

Keywords

church medieval building archaeology dating radiocarbon archaeomagnetism luminescence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamiec G and Aitken MJ, 1998. Dose-rate conversion factors: update, Ancient TL 16(2): 37–49.Google Scholar
  2. Aitken MJ, 1985. Thermoluminescence Dating. Academic Press, London: 359pp.Google Scholar
  3. Bailiff IK and Holland N, 2000. Dating bricks of the last two millennia from Newcastle upon Tyne: a preliminary study. Radiation Measurements 32(5–6): 615–619, DOI 10.1016/S1350-4487(99)00286-3.CrossRefGoogle Scholar
  4. Bailiff IK, 2007. Methodological Developments in the Luminescence Dating of Brick from English Late-Medieval and Post-Medieval Buildings. Archaeometry 49(4): 827–851, DOI 10.1111/j.1475-4754.2007.00338.x.CrossRefGoogle Scholar
  5. Blain S, Guibert P, Bouvier A, Vieillevigne E, Bechtel F, Sapin C and Baylé M, 2007. TL-dating applied to building archaeology: The case of the medieval church Notre-Dame-Sous-Terre (Mont-Saint-Michel, France). Radiation Measurements 42(9): 1483–1491, DOI 10.1016/j.radmeas.2007.07.015.CrossRefGoogle Scholar
  6. Blain S, Bailiff IK, Guibert P, Bouvier A and Baylé M, 2010. An intercomparison study of luminescence dating protocols and techniques applied to medieval brick samples from Normandy (France). Quaternary Geochronology 5(2–3): 311–316, DOI 10.1016/j.quageo.2009.02.016.CrossRefGoogle Scholar
  7. Cassen S, Lanos P, Dufresne P, Oberlin C, Delqué-Kolic E and Le Goffic M, 2009. Datations sur site (Tables des Marchands, alignement du Grand Menhir, Er Grah) et modélisation chronologique du néolithique morbihannais (Site dating (Tables des Marchands, alignment of the Grand Menhir, Er Grah) and chronological modelling of the Morbihanais Neolothic). In: Cassen S, ed., Autour de la Table, explorations archéologiques et discours savants sur une architecture restaurée à Locmariaquer, Morbihan (Table des Marchands et Grand Menhir), Colloque international de Vannes 2007. LARA, CNRS et Université de Nantes: 737–768 (in French).Google Scholar
  8. Forsyth G H, 1953. The Church of St Martin at Angers. Princeton, University Press, LondonGoogle Scholar
  9. Gallo N, Fieni L, Martini M and Sibilia E, 1999. Building archaeology, 14C and thermoluminescence: two examples comparison. Proceedings of « C14 et Archéologie «meeting, Suppl. Revue d’Archéométrie 1999 and Mémoires Société PréhistoriqueFrançaise XXVI: 425–431.Google Scholar
  10. Gascoyne M, 1982. Geochemistry of the actinides and their daughters. In: Ivanovitch M and Harmon RS, Eds., Uranium series disequilibrium: applications to environmental problems. Clarendon Press, Oxford: 33–55.Google Scholar
  11. Guibert P and Schvoerer M, 1991. TL dating: Low background gamma spectrometry as a tool for the determination of the annual dose. Nuclear Tracks Radiation Measurements 18(1–2): 231–238, DOI 10.1016/1359-0189(91)90117-Z.CrossRefGoogle Scholar
  12. Guibert P, Vartanian E, Bechtel F and Schvoerer M, 1996. Non-linear approach of TL response to dose: polynomial approximation. Ancient TL 14(2): 7–14.Google Scholar
  13. Guibert P, Bechtel F and Schvoerer M, 1997. Déséquilibre des séries de l’uranium, implications sur la dose annuelle en datation par thermoluminescence: une étude à la Grotte XVI, Cénac et Julien, Dordogne (France) (Desequilibrium of the uranium series, impact on the dose rate in thermoluminescence dating: a study of the Cave XVI, Cénac et Julien, Dordogne (France)). Quaternaire 8: 377–389 (in French).CrossRefGoogle Scholar
  14. Guibert P, Ney C, Bechtel F, Schvoerer M and Araguas P, 1998. Datation par thermoluminescence d’éléments architecturaux en terre cuite de la “Seo del Salvador”, cathédrale de Saragosse (Espagne) (Thermoluminescence dating of architectural ceramic features of the “Seo des Salvador” cathedral, Saragossa (Sapin)). Revue d’Archéométrie 22: 125–135 (in French).Google Scholar
  15. Guibert P, Lahaye C and Bechtel F, 2009. The importance of U-series disequilibrium of sediments in luminescence dating: a case study at the Roc de Marsal cave (Dordogne, France). Radiation Measurements 44(3): 223–231, DOI 10.1016/j.radmeas.2009.03.024.CrossRefGoogle Scholar
  16. Lanos P, 2001, L’approche bayésienne en chronométrie: application à l’archéomagnétisme (Bayesian approach in chronometry: application to archaeomagnetism). In: Barrandon J-N, Guibert P, Michel V, Eds., Datation, XXIe rencontres internationales d’archéologie et d’histoire d’Antibes, Editions APDCA, Antibes: 113–139 (in French).Google Scholar
  17. Lanos P, 2004, Bayesian inference of calibration curves, application to archaeomagnetism: Chapter 3 In: Buck CE and Millard AR, Eds., Tools for Constructing Chronologies, Crossing Disciplinary Boundaries, Series: Lecture Notes in Statistics: 177: 43–82. Springer-Verlag, London.Google Scholar
  18. Mallet J, 1984. L’art Roman de l’Ancien Anjou (Romanesque art in ancient Anjou). Picard, Paris: 22–29 (in French).Google Scholar
  19. Prigent D and Hunot JY, 2006. Saint-Martin d’Angers: des premières basiliques au site d’interprétation, L’église collégiale Saint-Martin (Angers, Maine-et-Loire) (St Martin’s, Angers: from the first basilica to the site of interpretation). fascicule de présentation du site, Conseil général de Maine-et-Loire, Ministère de la Culture et de la Communication, Région Pays-de-Loire: 4–19 (in French).Google Scholar
  20. Roque C, Guibert P, Dutine M, Vartanian E, Chapoulie R and Beechtel F, 2004. Dependance of luminescence characteristics of irradiated quartz with the thermal treatment and consequences for TL dating. Geochronometria 23: 1–8.Google Scholar
  21. Sapin C, Baylé M, Büttner S, Guibert P, Blain S, Lanos P, Chauvin A, Dufresne P and Oberlin C, 2008, Archéologie du bâti et archéométrie au Mont-Saint-Michel, nouvelles approches de Notre-Dame-sous-Terre (Building archaeology and archaeometry in the Mont-saint-Michel, new approaches of Notre-Dame-sous-Terre’s church). Archéologie Médiévale, CNRS Editions, Paris, tome 38: 71–122 (in French).Google Scholar
  22. Sanderson DCW, 1988. Fading of TL in feldspars: characteristics and corrections. Nuclear Tracks and Radiation Measurements 14(1–2): 155–161, DOI 10.1016/1359-0189(88)90057-X.Google Scholar
  23. Tyler S and Mc Keever SWS, 1988. Anomalous fading of TL in oligoclase. Nuclear Tracks and Radiation Measurements 14(1–2): 149–154, DOI 10.1016/1359-0189(88)90056-8.Google Scholar
  24. Vieillevigne E, Guibert P and Bechtel F, 2007. Luminescence chronology of the medieval citadel of Termez, Uzbekistan: TL dating of bricks masonries. Journal of Archaeological Science 34(9): 1402–1416, DOI 10.1016/j.jas.2006.10.030.CrossRefGoogle Scholar
  25. Visocekas R, Spooner NA, Zink A, Blanc P, 1994. Tunnel afterglow, fading and infrared emission in thermoluminescence of feldspars. Radiation Measurements 23(2–3): 377–385, DOI 10.1016/1350-4487(94)90067-1.CrossRefGoogle Scholar
  26. Zink A, 1996. Thermoluminescence des feldspaths: Emission par effet tunnel et par thermoluminescence dans l’infra-rouge, incidences sur la datation des feldspaths (Feldspar thermoluminescence. Emission by tunnel effect and by thermoluminescence in infrared, impacts on feldspar dating). Doctorat des Universités Paris VII Denis Diderot et Bordeaux III Michel de Montaigne (in French).Google Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2011

Authors and Affiliations

  • S. Blain
    • 1
  • P. Guibert
    • 1
  • D. Prigent
    • 2
  • P. Lanos
    • 3
  • C. Oberlin
    • 4
  • C. Sapin
    • 5
  • A. Bouvier
    • 1
  • P. Dufresne
    • 3
  1. 1.IRAMAT-CRP2A — UMR 5060, CNRSUniversité de BordeauxPessacFrance
  2. 2.Service archéologique départemental de Maine-et-LoireMaine-et-LoireFrance
  3. 3.IRAMAT-CRP2AGéoscience-Rennes-Université de RennesRennesFrance
  4. 4.Centre de datation par le RadioCarboneUniversité de LyonLyonFrance
  5. 5.Laboratoire Artehis — UMR 5594, CNRSUniversité de BourgogneDijonFrance

Personalised recommendations