, Volume 38, Issue 1, pp 23–33

Infrared radiofluorescence (IR-RF) dating of middle pleistocene fluvial archives of the Heidelberg Basin (Southwest Germany)

  • Tobias Lauer
  • Matthias Krbetschek
  • Manfred Frechen
  • Sumiko Tsukamoto
  • Christian Hoselmann
  • Michael Weidenfeller


The infrared radiofluorescence (IR-RF) dating technique was applied to eight fluvial samples that were collected from two sediment cores at the Heidelberg Basin located near Viernheim and Ludwigshafen in southwest Germany. Based on the IR-RF derived ages of the samples it was possible to establish a chronological framework for the Mid-Pleistocene fluvial deposits of the Heidelberg Basin. The results allow us to distinguish between four main periods of aggradation. The lowermost sample taken from 100 m core depth lead to an IR-RF age of 643 ± 28 ka pointing to a Cromerian period of aggradation (OIS 17–16). For the Elsterian it is now possible to distinguish between two aggradation periods, one occurring during the Lower Elsterian period (OIS 15) and a second during the Upper Elsterian period (OIS 12–11). For the so called Upper interlayer (or “Oberer Zwischenhorizont” — a layer of organic-rich and finer-grained deposits), the IR-RF results point to a deposition age of around 300 ka, with samples taken directly on top and out of this layer yielding IR-RF ages of 288 ± 19 ka and 302 ± 19 ka, respectively. Hence, the measured IR-RF ages clearly point to a deposition during the Lower Saalian period (OIS 9–8) whereas earlier studies assumed a Cromerian age for the sediments of the Upper Interlayer based on pollen records and also mollusc fauna. The new IR-RF dataset indicates that significant hiatuses are present within the fluvial sediment successions. In particular the Eemian and Upper Saalian deposits are missing in this part of the northern Upper Rhine Graben, as the 300 ka deposits are directly overlain by Weichselian fluvial sediments. It is obvious that time periods of increased fluvial aggradation were interrupted by time periods of almost no aggradation or erosion which should have been mainly triggered by phases of increased and decreased subsidence of the Heidelberg Basin.


Infrared Radiofluorescence Heidelberg Basin Rhine System Fluvial archives Middle Pleistocene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aitken MJ, 1985. Thermoluminescence dating. London, UK Academic Press: 359pp.Google Scholar
  2. Aitken MJ, 1998. Introduction to Optical Dating. Oxford, Oxford University Press: 280pp.Google Scholar
  3. Arnold LJ, Bailey RM and Tucker GE, 2007. Statistical treatment of fluvial dose distributions from southern Colorado arroyo deposits. Quaternary Geochronology 2(1–4): 162–167, DOI 10.1016/j.quageo.2006.05.003.CrossRefGoogle Scholar
  4. Bartz J, 1974. Die Mächtigkeit des Quartärs im Oberrheingraben. In: Illies JH and Fuchs K, eds., Approaches to Taphrogenesis vol. 8. Inter-Union-Commission on Geodynamics Scientific Report, Stuttgart, Schweitzerbart: 78–87.Google Scholar
  5. Bittmann F and Müller H, 1996. The Kärlich Interglacial site and its correlation with the Bilshausen sequence. In: Turner C, ed., The early middle Pleistocene in Europe. Balkema: 187–193.Google Scholar
  6. Blum MD and Tornqvist TE, 2000. Fluvial responses to climate and sea-level change: a review and look forward. Sedimentology 47(Suppl. 1): 2–48, DOI 10.1046/j.1365-3091.2000.00008.x.CrossRefGoogle Scholar
  7. Cloetingh S, Ziegler PA, Beekman F, Andriessen PAM, Matenco L, Bada G, Garcia-Castellanos D, Hardebol N, De’zes P and Sokoutis D, 2005. Lithospheric memory, state of stress and rheology: neotectonic controls on Europe’s intraplate continental topography. Quaternary Science Reviews 24(3–4): 241–304, DOI 10.1016/j.quascirev.2004.06.015.CrossRefGoogle Scholar
  8. Ellwanger D, Gabriel G, Hoselmann C, Lämmermann-Barthel J and Weidenfeller M, 2005. The Heidelberg drilling project (Upper Rhine Graben, Germany). Quaternaire 16: 191–199.Google Scholar
  9. Ellwanger D, Gabriel G, Simon T, Wielandt-Schuster U, Greiling RO, Hagedorn EM, Hahne J and Heinz J, 2008. Long sequence of Quaternary Rocks in the Heidelberg Basin Depocentre. Quaternary Science Journal (Eiszeitalter und Gegenwart) 57: 316–337.Google Scholar
  10. Erfurt G, Krbetschek MR, Trautmann TW, Stolz W, 2000. Radioluminescence (RL) behaviour of Al2O3:C-potential for dosimetric applications. Radiation Measurements 32(5–6): 735–739, DOI 10.1016/S1350-4487(00)00052-4.CrossRefGoogle Scholar
  11. Erfurt G, 2003. Infrared luminescence of Pb+ centres in potassium-rich feldspar. Physica status solidi (a) 200(2): 429–438.CrossRefGoogle Scholar
  12. Erfurt G and Krbetschek MR, 2003a. IRSAR — A single-aliquot regenerative-dose dating pro-tocol applied to the infrared radiofluorescence (IR-RF) of coarse-grain K feldspar. Ancient TL 21: 21–28.Google Scholar
  13. Erfurt G and Krbetschek MR, 2003b. Studies on the physics of the infrared radioluminescence of potassic feldspar and on the methodology of its application to sediment dating. Radiation Measurements 37(4–5): 505–510, DOI 10.1016/S1350-4487(03)00058-1.CrossRefGoogle Scholar
  14. Erfurt G, Krbetschek MR, Bortolot VJ and Preusser F, 2003. A fully automated multi-spectral radioluminescence reading system for geochronometry and dosimetry. Nuclear Instruments and Methods in Physics Research Section B 207(4): 487–499, DOI 10.1016/S0168-583X(03)01121-2.CrossRefGoogle Scholar
  15. Fiebig M, Buiter SJH and Ellwanger D, 2004. Pleistocene glaciations of South Germany. In: Rose J (ed.), Developments in Quaternary Science 2, Amsterdam, Elsevier: 147–154.Google Scholar
  16. Gabriel G, Ellwanger D, Hoselmann C and Weidenfeller M, 2008. The Heidelberg Basin Drilling Project. Quaternary Science Journal (Eiszeitalter und Gegenwart) 57: 253–260.Google Scholar
  17. Galbraith RF, Roberts RG, Laslett GM, Yoshida H and Olley JM, 1999. Optical dating of single and multiple grains of quartz from Jinmium Rock Shelter, northern Australia: Part 1, experimental design and statistical models. Archaeometry 41(2): 339–364, DOI 10.1111/j.1475-4754.1999.tb00987.x.CrossRefGoogle Scholar
  18. Hagedorn EM and Boenigk W, 2008. The Pliocene and Quaternary sedimentary and fluvial history in the Upper Rhine Graben based on heavy mineral analyses. Netherlands Journal of Geosciences — Geologie en Mijnbouw 87(1): 21–32.Google Scholar
  19. Haimberger R, Hoppe A and Schäfer A, 2005. High-resolution seismic survey on the Rhine River in the northern Upper Rhine Graben. International Journal of Earth Sciences 94(4): 657–668, DOI 10.1007/s00531-005-0514-z.CrossRefGoogle Scholar
  20. Hoselmann C, 2008. The Pliocene and Pleistocene fluvial evolution in the northern Upper Rhine Graben based on results of the research borehole at Viernheim (Hessen, Germany). Quaternary Science Journal (Eiszeitalter und Gegenwart) 57: 286–315.Google Scholar
  21. Huntley DJ and Baril MR, 1997. The K content of the K-feldspars being measured in optical dating or thermoluminescence dating. Ancient TL 15(1): 11–13.Google Scholar
  22. Huntley DJ and Lamothe M, 2001. Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating, Canadian Journal of Earth Sciences 38(7): 1093–1106, DOI 10.1139/cjes-38-7-1093.CrossRefGoogle Scholar
  23. Jain M, Murray A and Bøtter-Jensen L, 2004. Optically stimulated luminescence dating: how significant is incomplete bleaching in fluvial environments. Quaternaire 15: 143–157.CrossRefGoogle Scholar
  24. Kars RH, Wallinga J and Cohen KM, 2008. A new approach towards anomalous fading correction for feldspar IRSL dating — tests on samples in field saturation. Radiation Measurements 43(2–6): 786–790, DOI 10.1016/j.radmeas.2008.01.021.CrossRefGoogle Scholar
  25. Kemna HA, 2005. Pliocene and Lower Pleistocene Stratigraphy in the Lower Rhine Embayment, Germany. Kölner Forum für Geologie und Paläontologie 14: 1–121.Google Scholar
  26. Knipping M, 2008. Early and Middle Pleistocene pollen assemblages of deep core drillings in the northern Upper Rhine Graben, Germany. Netherlands Journal of Geosciences — Geologie en Mijnbouw 87(1): 51–66.Google Scholar
  27. Krbetschek MR, Trautmann T, Dietrich A and Stolz W, 2000. Radioluminescence dating of sediments: Methodological aspects. Radiation Measurements 32(5–6): 493–498, DOI 10.1016/S1350-4487(00)00122-0.CrossRefGoogle Scholar
  28. Krbetschek MR, Degering D und Alexowsky W, 2008. Infrarot-Radiofluoreszenz-Alter (IR-RF) unter-saalezeitlicher Sedimente Mittel- und Ostdeutschlands. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 159(1): 133–140.CrossRefGoogle Scholar
  29. Lauer T, Frechen M, Hoselmann C and Tsukamoto S, 2010. Fluvial aggradation phases in the Upper Rhine Graben — New insights by quartz OSL dating. Proceedings of Geologists’ Association 121: 154–161, DOI 10.1016/j.pgeola.2009.10.006.CrossRefGoogle Scholar
  30. Lepper K and McKeever SWS, 2002. An objective methodology for dose distribution analysis. Radiation Protection Dosimetry. Solid State Dosimetry 101: 349–352.Google Scholar
  31. Litt T, 2007. Introduction: Climate, Vegetation and Mammalian Faunas in Europe during Middle Pleistocene Interglacials (MIS 7,9,11). In: Sirocko F, Claussen M, Sánchez Goni MF and Litt T, eds., The climate of past interglacials. Elsevier: 352–358.Google Scholar
  32. Litt T, Behre KE, Meyer KD, Stephan HJ and Wansa S, 2007. Stratigraphische Begriffe für das Quartär des norddeutschen Vereisungsgebietes / Stratigraphical Terms for the Quaternary of the North German Glaciation Area. In: Litt T, ed., Stratigraphie von Deutschland, special issue in Eiszeitalter und Gegenwart 56(1/2):7–66.Google Scholar
  33. Miall AD, 1996. The Geology of Fluvial deposits. Sedimentary Facies, Basin Analysis, and Petroleum Geology. Berlin, Springer: 583 pp.Google Scholar
  34. Miallier D, Sanzelle S and Fain J, 1983. The use of flotation technique to separate quartz from feldspar. Ancient TL 1: 5–6.Google Scholar
  35. Peters G and Van Balen RT, 2007. Tectonic geomorphology of the northern Upper Rhine Graben, Germany. Global and Planetary Change 58(1–4): 310–334, DOI 10.1016/j.gloplacha.2006.11.041.CrossRefGoogle Scholar
  36. Preusser F, 2008. Characterisation and evolution of the River Rhine system. Netherlands Journal of Geosciences — Geologie en Mijnbouw 87 (1): 7–19.Google Scholar
  37. Rähle W, 2005. Eine mittelpleistozäne Molluskenfauna aus dem Oberen Zwischenhorizont des nördlichen Oberrheingrabens (Bohrung Mannheim-Lindenhof). Mainzer Geowissenschaftliche Mitteilungen 33: 9–20.Google Scholar
  38. Rodnight H, 2008. How many equivalent dose values are needed to obtain a reproducible distribution? Ancient TL 26: 3–10.Google Scholar
  39. Roe HM, 1999. Late Middle Pleistocene sea-level change in the southern North Sea: the record from eastern Essex, UK. Quaternary International 55(1): 115–128, DOI 10.1016/S1040-6182(98)00032-9.CrossRefGoogle Scholar
  40. Rolf C, Hambach U and Weidenfeller M, 2008. Rock and palaeomagnetic evidence for the Plio-Pleistocene palaeoclimatic change recorded in Upper Rhine Graben sediments (Core Ludwigshafen-Parkinsel). Netherlands Journal of Geosciences — Geologie en Mijnbouw 87(1): 39–48.Google Scholar
  41. Templer RH, 1986. The localised transition model of anomalous fading. Radiation Protection Dosimetry 17: 493–497.Google Scholar
  42. Trautmann T, Krbetschek MR, Dietrich A and Stolz W, 1998. Investigations of Feldspar Radioluminescence: Potential for a new Dating Technique. Radiation Measurements 29(3–4): 421–425, DOI 10.1016/S1350-4487(98)00012-2.CrossRefGoogle Scholar
  43. Trautmann T, Krbetschek MR, Dietrich A and Stolz W, 1999a. Radioluminescence dating: a new tool for Quaternary geology and archaeology. Naturwissenschaften 86: 441–444.CrossRefGoogle Scholar
  44. Trautmann T, Krbetschek, MR, Dietrich A and Stolz W, 1999b. Feldspar radioluminescence: a new dating method and ist physical background. Journal of Luminescence 85(1–3): 45–58, DOI 10.1016/S0022-2313(99)00152-0.CrossRefGoogle Scholar
  45. Trautmann T, Krbetschek MR, Dietrich A and Stolz W, 2000. The basic principle of radioluminescence dating and a localized transition model. Radiation Measurements 32(5–6): 487–492, DOI 10.1016/S1350-4487(00)00119-0.CrossRefGoogle Scholar
  46. Van den Boogard C, Van den Boogard P and Schmincke HU, 1989. Quartärgeologisch-tephrostratigraphische Neuaufnahme und Interpretation des Pleistozänprofils Kärlich. Eiszeitalter und Gegenwart 39: 62–86.Google Scholar
  47. Vasil’chenko V, Molod’kov A and Jaek I, 2005. Tunneling processes and anomalous fading in natural feldspars extracted from quaternary deposits. Journal of Applied Spectroscopy 72(2): 218–223, DOI 10.1007/s10812-005-0058-9.CrossRefGoogle Scholar
  48. Wallinga J, 2002. Optically stimulated luminescence dating of fluvial deposits: a review. Boreas 31(4): 303–322, DOI 10.1111/j.1502-3885.2002.tb01076.x.CrossRefGoogle Scholar
  49. Wedel J, 2008. Pleistozäne Mollusken aus Forschungsbohrungen des Heidelberger Beckens. Quaternary Science Journal (Eiszeitalter und Gegenwart) 57: 382–402.Google Scholar
  50. Weidenfeller and Kärcher, 2008. Tectonic influence on fluvial preservation: aspects of the architecture of Middle and Late Pleistocene sediments in the northern Upper Rhine Graben, Germany. Netherlands Journal of Geosciences — Geologie en Mijnbouw 87(1): 33–40.Google Scholar
  51. Weidenfeller M and Knipping M, 2008. Correlation of Pleistocene sediments from boreholes in the Ludwigshafen area, western Heidelberg Basin. Quaternary Science Journal (Eiszeitalter und Gegenwart) 57: 270–285.Google Scholar
  52. Wintle AG, 1973. Anomalous fading of thermoluminescence in mineral samples. Nature 245(5421): 143–144, DOI 10.1038/245143a0.CrossRefGoogle Scholar
  53. Ziegler PA and Fraefel M, 2009. Response of drainage systems to Neogene evolution of the Jura fold-thrust belt and Upper Rhine Graben. Swiss Journal of Geosciences 102(1): 57–75, DOI 10.1007/s00015-009-1306-4.CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2011

Authors and Affiliations

  • Tobias Lauer
    • 1
    • 2
  • Matthias Krbetschek
    • 2
  • Manfred Frechen
    • 1
  • Sumiko Tsukamoto
    • 1
  • Christian Hoselmann
    • 3
  • Michael Weidenfeller
    • 4
  1. 1.Leibniz Institute for Applied GeophysicsHannoverGermany
  2. 2.Sächsische Akademie der Wissenschaften zu Leipzig, Quaternary Geochronology Section at Institute of Applied PhysicsTU Bergakademie FreibergFreibergGermany
  3. 3.Hessian Agency for Environment and Geology (HLUG)WiesbadenGermany
  4. 4.Agency for Geology and Mining Rheinland-Pfalz (LGB)Mainz-HechtsheimGermany

Personalised recommendations