Geochronometria

, Volume 38, Issue 1, pp 64–71

Stratigraphic position of fluvial and aeolian deposits in the Żabinko site (W Poland) based on TL dating

  • Paweł Zieliński
  • Robert J. Sokołowski
  • Stanisław Fedorowicz
  • Michał Jankowski
Article
  • 78 Downloads

Abstract

The known from literature Żabinko site is situated in the Warta Pradolina, within the dune field occurring on the bifurcation terrace. In the site we found fluvial, fluvio-aeolian and aeolian deposits, paleosols, and organic infillings of the inactive river channels. The purpose of the study was to determine stratigraphic position of the deposit units distinguished on the basis of lithofacial analysis, pedological description and thermoluminescence dating. The obtained results well correspond to the previously published ones, and new units were also found.

Keywords

fluvial and aeolian deposition TL dating Plenivistulian Late Vistulian Holocene Warta river valley 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamiec G and Aitken MJ, 1998. Dose-rate conversion factors: update. Ancient TL 16(2): 37–50.Google Scholar
  2. Aitken MJ and Xie J 1985. Moisture correction for annual gamma dose. Ancient TL 8: 6–9.Google Scholar
  3. Antczak B, 1986. Transformacja układu koryta i zanik bifurkacji Warty w Pradolinie Warszawsko-Berlińskiej i południowej części Przełomu Poznańskiego podczas późnego vistulianu (Channel pattern conversion and cessation of the Warta river bifurcation in the Warsaw-Berlin Pradoline and southern Poznań Gap Secion during the Late Vistulian). Seria Geografia 35 UAM, Poznań: 111pp (in Polish).Google Scholar
  4. Bluszcz A, 2000. Datowanie luminescencyjne osadów czwartorzędowych — teoria, ograniczenia, problemy interpretacyjne (Luminescence dating of Quaternary sediments-theory, limitations, interpretation problems). Geochronometria 17: 104 pp (in Polish).Google Scholar
  5. Bogaart PW, Van Balen RT, Kasse C and Vandenberghe J, 2003. Process-based modelling of fluvial system response to rapid climate change II. Application to the River Maas (The Netherlands) during the Last Glacial-Interglacial Transition. Quaternary Science Reviews 22: 2097–2110, DOI 10.1016/S0277-3791(03)00143-4.CrossRefGoogle Scholar
  6. Bohncke S, Kasse C and Vanderberghe J, 1995. Climate induced environmental changes during the Vistulian Lateglacial at Żabinko, Poland. Questiones Geographicae, Special Issue, 4: 43–64.Google Scholar
  7. Fedorowicz S, 2006. Metodyczne aspekty luminescencyjnego oznaczania wieku osadów neoplejstoceńskich Europy Środkowej (Methodological aspects of luminescence dating of Central Europe’s Neopleistocene deposits. Gdańsk, Wydawnictwo Uniwersytetu Gdańskiego: 156 pp (in Polish).Google Scholar
  8. Fryberger SG, Hesp P and Hatings K, 1992. Aeolian granule ripple deposits, Namibia. Sedimentology 39(2): 319–331, DOI 10.1111/j.1365-3091.1992.tb01041.x.CrossRefGoogle Scholar
  9. Goździk J, 1998. Struktury sedymentacyjne w eolicznych piaskach pokrywowych w Polsce (Sedimentary structures in aeolian cover sands in Poland). In: Mycielska-Dowgiałło E, ed., Struktury sedymentacyjne i postsedymentacyjne w osadach czwartorzędowych i ich wartość interpretacyjna (Sedimentological and postsedimentological structures in Quaternary sediments and their value for interpretation). Warszawa, UW: 167–191 (in Polish).Google Scholar
  10. Hunter RE, 1977. Basic types of stratification in small eolian dunes. Sedimentology 24(3): 361–387, DOI 10.1111/j.1365-3091.1977.tb00128.x.CrossRefGoogle Scholar
  11. Kaiser K, Barthelmes A, Czakó Pap S, Hilgers A, Janke W, Kühn P and Theuerkauf M, 2006. A Lateglacial palaeosol cover in the Altdarss area, southern Baltic Sea coast (northeast Germany): investigations on pedology, geochronology and botany. Netherlands Journal of Geosciences — Geologie en Mijnbouw 85(3): 197–220.Google Scholar
  12. Kase C, 1997. Cold-Climate Aeolian Sand-Sheet Formation in North-Western Europe (c. 14-12.4 ka); a Response to Permafrost Degradation and Increased Aridity. Permafrost and Preiglacial Processes. 8. 295–311.CrossRefGoogle Scholar
  13. Kasse C, 2002. Sandy aeolian deposits and environments and their relation to climate during the Last Glacial Maximum and Lateglacial in northwest and central Europe. Progress in Physical Geography 26(4): 507–532, DOI 10.1191/0309133302pp350ra.CrossRefGoogle Scholar
  14. Kasse C, Vandenberghe J, van Huissteden J, Bohncke SJP and Bos JAA, 2003. Sensitivity of Weichselian fluvial systems to climate change (Nochten mine, eastern Germany). Quaternary Science Reviews 22: 2141–2156, DOI 10.1016/S0277-3791(03)00146-X.CrossRefGoogle Scholar
  15. Kasse C, Vandenberghe D, De Corte F and Van Den Haute P, 2007. Late Weichselian fluvio-aeolian sands and coversands of type locality Grubbenvorst (southern Nederlands): sedimentary environments, climate record and age. Journal of Quaternary Science 22(7): 695–708, DOI 10.1002/jqs.1087.CrossRefGoogle Scholar
  16. Koster EA, 2005. Recent Advances in Luminescence Dating of Late Pleistocene (Cold-Climate) Aeolian Sand and Loess Deposits in Western Europe. Permafrost and Periglacial Processes 16: 131–143. DOI 10.1002/ppp.512CrossRefGoogle Scholar
  17. Kozarski S and Nowaczyk B, 1991. The Late Quaternary Climate and Human Impact on Aeolian Processes in Poland. Zeitschrift für Geomorphologie N.F., Supplmentband 93: 29–37.Google Scholar
  18. Kozarski S. and Nowaczyk B. 1995. The Bólling interstadial at Żabinko and Late Vistulian environmental changes in middle reach of the Warsaw-Berlin Pradolina. Quaternary Studies in Poland 13: 43–53.Google Scholar
  19. Kozarski S, Gonera P and Antczak B, 1988. Valley floor development and paleohydrological changes: The Late Vistulian and Holocene history of the Warta River (Poland). In: Lang G. (ed.) Lake, Mire and River Environments during the last 15 000 years, Rotterdam, Brookfirld: 185–203.Google Scholar
  20. Lea PD, 1990. Pleistocene periglacial aeolian deposits in southwestern Alaska: sedimentary facies and depositional processes. Journal of Sedimentary Petrology 60(4): 582–591, DOI 10.1306/212F91F1-2B24-11D7-8648000102C1865D.Google Scholar
  21. Manikowska B, 1985. O glebach kopalnych, stratygrafii i litologii wydm Polski środkowej (On the fossil soils, stratigraphy and litology of the dunes in central Poland). Acta Geographica Lodziensia: 52pp (in Polish).Google Scholar
  22. Manikowska B, 1995. Aeolian activity differentation in the area of Poland during the period 20-8 ka BP. Biuletyn Peryglacjalny 34: 125–166.Google Scholar
  23. McKee ED, 1966. Structures of dunes at White Sands National Monument, New Mexico (and a comparison with structures of dunes from other selected areas). Sedimentology 7(1): 1–69, DOI 10.1111/j.1365-3091.1966.tb01579.x.CrossRefGoogle Scholar
  24. Miall D, 1996. The Geology of Fluvial Deposits. Sedimentary Facies, Basin Analysis, and Petroleum Geology. Springer, Berlin: 582 pp.Google Scholar
  25. Morozova GS and Smith ND, 2003. Organic matter deposition in the Saskatchewan River floodplain (Cumberland Marshes, Canada): effects of progradational avulsions. Sedimentary Geology 157: 1529, DOI 10.1016/S0037-0738(02)00192-6.CrossRefGoogle Scholar
  26. Nowaczyk B, 1976. Geneza i rozwój wydm śródlądowych w zachodniej części pradoliny warszawsko-berlińskiej w świetle badań struktury, uziarnienia i stratygrafii budujących je osadów (The genesis and development of inland dunes in the western part of the Warsaw-Berlin Pradolina in the light of examinations of the structure, granulation and stratigraphy of the deposits which built them). Prace Komisji Geograficzno-Geologicznej, PTPN 16: 108pp (in Polish).Google Scholar
  27. Nowaczyk B, 1986. Wiek wydm, ich cechy granulometryczne i strukturalne a schemat cyrkulacji atmosferycznej w Polsce w późnym vistulianie i holocenie (The age of dunes, their textural and structural properties against atmospheric circulation pattern of Poland during the Late Vistulian and Holocene). Seria Geografia 28. Poznań, Wyd. Naukowe UAM: 245pp (in Polish).Google Scholar
  28. Poręba GJ and Fedorowicz S, 2005. Gamma spectrometry for OSL and TL dating of loess deposits at Dybawka and Tarnowce (SE Poland). Geochronometria 24: 27–32.Google Scholar
  29. Rasmussen SO, Seierstad IK, Andersen KK, Bigler M, Dahl-Jensen D and Johnsen SJ, 2008. Synchronization of the NGRIP, GRIP, and GISP2 ice cores across MIS 2 and palaeoclimatic implications Quaternary Science Reviews 27: 18–28, DOI 10.1016/j.quascirev.2007.01.016.CrossRefGoogle Scholar
  30. Rittenour TM, 2008. Luminescence dating of fluvial deposits: applications to geomorphic, palaeoseismic and archaeological research. Boreas 37: 613–635, DOI 10.1016/j.quascirev.2007.01.016.CrossRefGoogle Scholar
  31. Rotnicki K, 1970. Główne problemy wydm śródlądowych w Polsce w świetle badań wydmy w Węglewicach (Main problems of inland dunes in Poland based on investigations of the dune at Węglewice). Prace Komisji Geograficzno-Geologicznej, PTPN 11(2): 146pp (in Polish).Google Scholar
  32. Schwan J, 1986. The origin of horizontal alternating bedding in Weichselian aeolian sands in Northwestern Europe. Sedimentary Geology 49(1–2): 73–108, DOI 10.1016/0037-0738(86)90016-3.CrossRefGoogle Scholar
  33. Van Huissteden J, Kasse C, 2001. Detection of rapid climate change in Last Glacial fluvial successions in The Netherlands. Global and Planetary Change 28(1–4): 319–339, DOI 10.1016/S0921-8181(00)00082-5.CrossRefGoogle Scholar
  34. Wintle A and Prószyńska H, 1983. TL dating of loess in Germany and Poland. PACT, 9. 547–554.Google Scholar
  35. Tobolski K, 1988. Paleobotanical study of Bölling at Żabinko in the vicinity of Poznań, Poland. Quaestiones Geographicae 10: 119–124.Google Scholar
  36. Zeeberg J, 1998. The European sand belt in eastern Europe — and comparison of Late Glacial dune orientation with GCM simulation results. Boreas 27(2): 127–139, DOI 10.1111/j.1502-3885.1998.tb00873.x.CrossRefGoogle Scholar
  37. Zieliński P, 2004. Modele rozwoju wydm w zachodniej części Wyżyny Lubelskiej (The models of dune development in the western part of the Lublin Upland). In: Wojtanowicz J, ed., Formy i osady eoliczne. SGP, Poznań: 77–84 (in Polish).Google Scholar
  38. Zieliśki P and Issmer K, 2008. Propozycja kodu genetycznego osadów środowiska eolicznego (The proposal of genetic code of aeolian deposits). Przegląd Geologiczny 56(1): 67–72 (in Polish).Google Scholar
  39. Zieliński T, 2007: The Pleistocene climate-controlled fluvial sedimentary record in the Bełchatów mine (central Poland). Sedimentary Geology 193(1–4): 203–209, DOI 10.1016/j.sedgeo.2005.06.016.CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2011

Authors and Affiliations

  • Paweł Zieliński
    • 1
  • Robert J. Sokołowski
    • 2
  • Stanisław Fedorowicz
    • 3
  • Michał Jankowski
    • 4
  1. 1.Department of Physical Geography and PaleogeographyMaria Curie-Skłodowska UniversityLublinPoland
  2. 2.Department of Marine GeologyUniversity of GdańskGdańskPoland
  3. 3.Department of Geomorphology and Quaternary GeologyUniversity of GdańskGdańskPoland
  4. 4.Department of Soil ScienceNicolaus Copernicus UniversityToruńPoland

Personalised recommendations