Exposure to widespread environmental toxicants and children’s cognitive development and behavioral problems

  • Joanna JurewiczEmail author
  • Kinga Polańska
  • Wojciech Hanke
Review Paper


Nowadays a special attention is focused on prenatal and childhood exposures to a variety of contaminants in the environment, especially toxicants widely present in the environment and their impact on children’s health and neurodevelopment. This article aims at evaluating the impact of exposure to several widespread toxicants including: polycyclic aromatic hydrocarbons (PAHs), phthalates, bisphenol A, brominated flame retardants and gas cooking on children’s cognitive development and behavioral problems by reviewing most recent published literature. Epidemiological studies focusing on exposure to widespread toxicants and children’s development for the last eleven years were identified by a search of the PubMed, Medline, Ebsco and Toxnet literature bases. The combination of following key words was used: 1) referring to the exposure: pregnancy, prenatal exposure, postnatal exposure, gas cooking, exposure to phthalates, bisphenol A, brominated flame retardants, PAHs and 2) referring to outcome: neurodevelopment, neurobehavior, psychomotor development, behavioral problems, cognitive development, mental health, school achievements, learning abilities. The results from the presented studies suggest that there are strong and rather consistent indications that the developing nervous system is particularly vulnerable to insult from low levels of exposure to widespread environmental contaminants such as: phthalates, bisphenol A, brominated flame retardants, polycyclic aromatic hydrocarbons, gas cooking. Considering the suggested health effects, more epidemiologic data is urgently needed and, in the meantime, precautionary policies must be implemented.

Key words

Widespread environmental toxicants Children Cognitive development Behavioral problems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rauh VA, Horton MK, Miller RL, Whyatt RM, Perera F. Neonatology and the environment: impact of early exposure to airborne environmental toxicants on infant and child neurodevelopment. Neoreviews 2010;11:363–369.PubMedCrossRefGoogle Scholar
  2. 2.
    Plomin R, Owen M, McGuffin P. The genetic basis of complex human behaviors. Science 1994;264:1733–1739.PubMedCrossRefGoogle Scholar
  3. 3.
    Api AM. Toxicological profile of diethyl phthalate: A vehicle for fragrance and cosmetic ingredients. Food Chem Toxicol 2001;39:97–108.PubMedCrossRefGoogle Scholar
  4. 4.
    Tanaka T. Reproductive and neurobehavioral effects of bis(2-ethylhexyl) phthalate (DEHP) in a cross-mating toxicity study of mice. Food Chem Toxicol 2005;43:581–589.PubMedCrossRefGoogle Scholar
  5. 5.
    Engel SM, Zhu C, Berkowitz GS, Calafat AM, Silva MJ, Miodovnik A, et al. Prenatal phthalate exposure and performance on Neonatal Behavioral Assessment Scale in multiethnic birth cohort. Neurotoxicology 2009;30:522–528.PubMedCrossRefGoogle Scholar
  6. 6.
    Yolton K, Xu Y, Strauss D, Altaye M, Calafat A, Khoury J. Prenatal exposure to bisphenol A and phthalates and infant neurobehavior. Neurotoxicol Teratol 2011;33:558–566.PubMedCrossRefGoogle Scholar
  7. 7.
    Cho SC, Bhang SY, Hong YC, Shin MS, Kim BN, Kim JW, et al. Relationship between environmental phthalate exposure and the intelligence of school-age children. Environ Health Perspect 2010;118(7):1027–1032.PubMedCrossRefGoogle Scholar
  8. 8.
    Kim Y, Ha EH, Kim EJ, Park H, Ha M, Kim JH, et al. Prenatal exposure to phthalates and infant development at 6 months: Prospective Mothers and Children’s Environmental Health (MOCEH) Study. Environ Health Perspect 2011;119(10):1495–1500.PubMedCrossRefGoogle Scholar
  9. 9.
    Engel SM, Miodovnik A, Canfield RL, Zhu C, Silva MJ, Calafat AM, et al. Prenatal phthalate exposure is associated with childhood behavior and executive functioning. Environ Health Perspect 2010;118(4):565–571.PubMedCrossRefGoogle Scholar
  10. 10.
    Swan SH, Liu F, Kruse RL, Wang C, Redmon JB, Sparks A, et al. Prenatal phthalate exposure and reduced masculine play in boys. Int J Androl 2009;32:1–9.CrossRefGoogle Scholar
  11. 11.
    Miodovnik A, Engel SM, Zhu C, Ye X, Soorya LV, Silva MJ, et al. Endocrine disruptors and childhood social impairment. Neurotoxicology 2011;32:261–267.PubMedCrossRefGoogle Scholar
  12. 12.
    Kang JH, Kondo F, Katayama Y. Human exposure to bisphenol A. Toxicology 2006;226(2–3):79–89.PubMedCrossRefGoogle Scholar
  13. 13.
    Braun JM, Yolton K, Dietrich KN, Horunung R, Ye X, Calafat AM, et al. Prenatal bisphenol A exposure and early childhood behavior. Environ Health Perspect 2009;117(12):1945–1952.PubMedGoogle Scholar
  14. 14.
    Braun JM, Kalkbrenner AM, Calafat AM, Yolton K, Ye X, Dietrich KN, et al. Impact of Early-life bisphenol A exposure on behavior and executive function in children. Pediatrics 2011;128(5):873–882.PubMedCrossRefGoogle Scholar
  15. 15.
    Sathyanarayana S, Braun JM, Yolton K, Liddy S, Lanphear BP. Case report: high prenatal bisphenola exposure and infant neonatal neurobehavior. Environ Health Perspect 2011;119(8):1170–1175.PubMedCrossRefGoogle Scholar
  16. 16.
    Roze E, Meijer L, Bakker A, Van Braeckel KNJA, Sauer PJJ, Bos AF. Prenatal exposure to organohalogens, including brominated flame retardants, influences motor, cognitive and brhavioral performance at school age. Environ Health Perspect 2009;117(12):1953–1958.PubMedGoogle Scholar
  17. 17.
    Herbstman JB, Sjodin A, Kurzon M, Lederman SA, Jones RS, Rauh V, et al. Prenatal exposure to PBDEs and neurodevelopment. Environ Health Perspect 2010;118(5):712–717.PubMedCrossRefGoogle Scholar
  18. 18.
    Boström CE, Gerde P, Hanberg A, Jernström B, Johansson C, Kyrklund T, et al. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect 2002;110(Suppl 3):451–488.PubMedCrossRefGoogle Scholar
  19. 19.
    Saunders CR, Das SK, Ramesh A, Shockley DC, Mukherjee S. Benzo(a)pyrene-induced acute neurotoxicity in the F-344 rat: role of oxidative stress. J Appl Toxicol 2006;26:427–438.PubMedCrossRefGoogle Scholar
  20. 20.
    Šrám RJ, Binkova B. Molecular epidemiology studies on occupational and environmental exposure to mutagens and carcinogens, 1997–1999. Environ Health Perspect 2000;108:57–70.PubMedGoogle Scholar
  21. 21.
    Wormley DD, Ramesh A, Hood DB. Environmental contaminant-mixture effects on CNS development, plasticity, and behavior. Toxicol Appl Pharmacol 2004;197:49–65.PubMedCrossRefGoogle Scholar
  22. 22.
    Perera FP, Rauh V, Whyatt RM, Tsai WY, Tang D, Diaz D, et al. Effects of prenatal exposure to airborne polycyclic aromatic hydrocarbons on neurodevelopment in the first 3 years of life among inner-city children. Environ Health Perspect 2006;114(8):1287–1292.PubMedCrossRefGoogle Scholar
  23. 23.
    Perera FP, Li Z, Whyatt R, Hoepner L, Wang S, Camann D, et al. Prenatal airborne polycyclic aromatic hydrocarbon exposure and child IQ at age 5 years. Pediatrics 2009;124(2):195–202.CrossRefGoogle Scholar
  24. 24.
    Perera FP, Wang S, Vishnevetsky J, Zhang B, Cole KJ, Tang D, et al. Polycyclic aromatic hydrocarbons-aromatic DNA adducts in cord blood and behavior scores in New York city children. Environ Health Perspect 2011;119(8):1176–1181.PubMedCrossRefGoogle Scholar
  25. 25.
    Edwards SC, Jedrychowski W, Butscher M, Camann D, Kieltyka A, Mroz E, et al. Prenatal exposure to airborne polycyclic aromatic hydrocarbons and children’s intelligence at 5 years of age in a prospective cohort study in Poland. Environ Health Perspect 2010;118(9):1326–1331.PubMedCrossRefGoogle Scholar
  26. 26.
    Tang D, Li T, Liu JJ, Zhou Z, Yuan T, Chen Y, et al. Effects of prenatal exposure to coal-burning pollutants on children’s development in China. Environ Health Perspect 2008;116(5):674–679.PubMedCrossRefGoogle Scholar
  27. 27.
    Perera F, Li T, Zhou Z, Yuan T, Chen Y, Qu L, et al. Benefits of reducing prenatal exposure to coal-burning pollutants to children’s neurodevelopment in China. Environ Health Perspect 2008;116(10):1396–1400.PubMedCrossRefGoogle Scholar
  28. 28.
    Wang S, Chanock S, Tang D, Li Z, Edwards S, Jedrychowski W, et al. Effect of gene-environment interactions on mental development in African American, Dominican, and Caucasian mothers and newborns. Ann Hum Genet 2010;74:46–56.PubMedCrossRefGoogle Scholar
  29. 29.
    Perera FP, Tang D, Rauh V, Tu HY, Tsai WY, Becker M, et al. Relationship between polycyclic aromatic hydrocarbon-DNA adducts, environmental tobacco smoke, and child development in the World Trade Center Cohort. Environ Health Perspect 2007;115(10):1497–1502.PubMedGoogle Scholar
  30. 30.
    Vrijheid M, Martinez D, Aguilera I, Bustamante M, Ballester F, Estarlich M, et al. INMA Project. Indoor air pollution from gas cooking and infant neurodevelopment. Epidemiology 2012;23(1):23–32.PubMedCrossRefGoogle Scholar
  31. 31.
    Morales E, Julvez J, Torrent M, de Cid R, Guxens M, Bustamante M, et al. Association of early-life exposure to household gas appliances and indoor nitrogen dioxide with cognition and attention behavior in preschoolers. Am J Epidemiol 2009;169(11):1327–1336.PubMedCrossRefGoogle Scholar
  32. 32.
    Ghisari M, Bonefeld-Jorgensen EC. Effects of plasticizers and their mixtures on estrogen receptor and thyroid hormone functions. Toxicol Lett 2009;189:67–77.PubMedCrossRefGoogle Scholar
  33. 33.
    Xu Y, Agrawal S, Cook TJ, Knipp GT. Di-(2-ethylhexyl)-phthalate affects lipid profiling in fetal rat brain upon maternal exposure. Arch Toxicol 2007;81:57–62.PubMedCrossRefGoogle Scholar
  34. 34.
    Tanida T, Warita K, Ishihara K, Fukui S, Mitsuhashi T, Sugawara T, et al. Fetal and neonatal exposure to three typical environmental chemicals with different mechanisms of action: mixed exposure to phenol, phthalate, and dioxin cancels the effects of sole exposure on mouse midbrain dopaminergic nuclei. Toxicol Lett 2009;189(1):40–47.PubMedCrossRefGoogle Scholar
  35. 35.
    Ishido M, Masuo Y, Kunimoto M, Oka S, Morita M. Bisphenol A causes hyperactivity in the rat concomitantly with impairment of tyrosine hydroxylase immunoreactivity. J Neurosci Res 2004;76(3):423–433.PubMedCrossRefGoogle Scholar
  36. 36.
    Borch J, Axelstad M, Vinggaard AM, Dalgaard M. Diisobutyl phthalate has comparable anti-androgenic effects to di-n-butyl phthalate in fetal rat testis. Toxicol Lett 2006;163(3):183–190.PubMedCrossRefGoogle Scholar
  37. 37.
    Colborn T. Neurodevelopment and endocrine disruption. Environ Health Perspect 2004;112:944–949.PubMedCrossRefGoogle Scholar
  38. 38.
    Palanza P, Morellini F, Parmigiani S, vom Saal FS. Prenatal exposure to endocrine disrupting chemicals: effects on behavioral development. Neurosci Biobehav Rev 1999;23(7):1011–1027.PubMedCrossRefGoogle Scholar
  39. 39.
    Costa LG, Giordano G, Tagliaferri S, Caglieri A, Mutti A. Polybrominated diphenyl ethers (PBDE) flame retardants: environmental contamination, human body burden and potential adverse health effects. Acta Biomed 2008;79(3):172–183.PubMedGoogle Scholar
  40. 40.
    Legler J. New insights into the endocrine disrupting effects of brominated flame retardants. Chemosphere 2008;73(2):216–222.PubMedCrossRefGoogle Scholar
  41. 41.
    Archibong AE, Inyang F, Ramesh A, Greenwood M, Nayyar T, Kopsombut P, et al. Alteration of pregnancy related hormones and fetal survival in F-344 rats exposed by inhalation to benzo(a)pyrene. Reprod Toxicol 2002;16:801–808.PubMedCrossRefGoogle Scholar
  42. 42.
    Bui QQ, Tran MB, West WL. A comparative study of the reproductive effects of methadone and benzo(a)pyrene in the pregnant and pseudopregnant rat. Toxicol 1986;42(2–3):195–204.CrossRefGoogle Scholar
  43. 43.
    Takeda K, Tsukue N, Yoshida S. Endocrine-disrupting activity of chemicals in diesel exhaust and diesel exhaust particles. Environ Sci 2004;11:33–45.PubMedGoogle Scholar
  44. 44.
    Dejmek J, Solansky I, Beneš I, Lenícek J, Šrám RJ. The impact of polycyclic aromatic hydrocarbons and fine particles on pregnancy outcome. Environ Health Perspect 2000;108:1159–1164.PubMedCrossRefGoogle Scholar
  45. 45.
    Meyn MS. Ataxia-telangiectasia and cellular responses to DNA damage. Cancer Res 1995;55:5991–6001.PubMedGoogle Scholar
  46. 46.
    Nicol CJ, Harrison ML, Laposa RR, Gimelshtein IL, Wells PG. A teratologic suppressor role for p53 in benzo[a]pyrene-treated transgenic p53-deficient mice. Nat Genet 1995;10:181–187.PubMedCrossRefGoogle Scholar
  47. 47.
    Wood KA, Youle RJ. The role of free radicals and p53 in neuron apoptosis in vivo. J Neurosci 1995;15:5851–5857.PubMedGoogle Scholar
  48. 48.
    Wilson VL, Jones PA. Inhibition of DNA methylation by chemical carcinogens in vitro. Cell 1983;32(1):239–246.PubMedCrossRefGoogle Scholar
  49. 49.
    Lundqvist C, Zuurbier M, Leijs M, Johansson C, Ceccatelli S, Saunders M, et al. The effects of PCBs and dioxins on child health. Acta Paediatr 2006;453(Suppl 95):55–64.CrossRefGoogle Scholar
  50. 50.
    Bellinger DC. Assessing environmental neurotoxicant exposure and child neurobehavior — Confunded by confounding? Epidemiology 2004;15(4):383–384.PubMedCrossRefGoogle Scholar
  51. 51.
    Beck AT, Steer RA, Brown GK. Manual for the Beck Depression Inventory-II. San Antonio, TX: Psychological Corporation; 1996.Google Scholar
  52. 52.
    Caldwell BM, Bradley RH. Home observation for measurement of the environment: administration manual. Little Rock, AR: University of Arkansas; 2003.Google Scholar
  53. 53.
    Latini G, Felice CD, Presta G, Del Vecchio A, Paris I, Ruggieri F, et al. In utero exposure to di-(2-ethylhexyl) phthalate and duration of human pregnancy. Environ. Health Perspect 2003;111:1783–1785.CrossRefGoogle Scholar
  54. 54.
    Dirven HA, van den Broek PH, Arends AM, Nordkamp HH, de Lepper AJ, Henderson PT, et al. Metabolites of the plasticizer di(2-ethylhexyl) phthalate in urine samples of workers in polyvinylchloride processing industries. Int Arch Occup Environ Health 1993;64:549–554.PubMedCrossRefGoogle Scholar
  55. 55.
    Koch HM, Bolt HM, Angerer J. Di(2-ethylhexyl)phthalate (DEHP) metabolites in human urine and serum after a single oral dose of deuterium-labelled DEHP. Arch Toxicol 2004;78:123–130.PubMedCrossRefGoogle Scholar
  56. 56.
    Hauser R, Meeker JD, Park S, Silva MJ, Calafat AM. Temporal variability of urinary phthalate metabolite levels in men of reproductive age. Environ Health Perspect 2004;112:1734–1740.PubMedCrossRefGoogle Scholar
  57. 57.
    Huang PC, Kuo PL, Guo YL, Liao PC, Lee CC. Associations between urinary phthalate monoesters and thyroid hormones in pregnant women. Hum Reprod 2007;22(10):2715–2722.PubMedCrossRefGoogle Scholar
  58. 58.
    Silva MJ, Reidy JA, Herbert AR, Preau JL Jr, Needham LL, Calafat AM. Detection of phthalate metabolites in human amniotic fluid. Bull Environ Contam Toxicol 2004;72:1226–1231.PubMedCrossRefGoogle Scholar
  59. 59.
    Teitelbaum SL, Britton JA, Calafat AM, Ye X, Silva MJ, Reidy JA, et al. Temporal variability in urinary concentrations of phthalate metabolites, phytoestrogens and phenols among minority children in the United States. Environ Res 2008;106(2):257–269.PubMedCrossRefGoogle Scholar
  60. 60.
    Völkel W, Colnot T, Csanady GA, Filser JG, Dekant W. Metabolism and kinetics of bisphenol A in humans at low doses following oral administration. Chem Res Toxicol 2002;15(10):1281–1287.PubMedCrossRefGoogle Scholar
  61. 61.
    Koch HM, Calafat AM. Human body burdens of chemicals used in plastic manufacture. Biol Sci 2009;364(1526):2063–2078.CrossRefGoogle Scholar
  62. 62.
    Mahalingaiah S, Meeker JD, Pearson KR, Calafat AM, Petrozza J, Hauser R. Temporal variability and predictors of urinary bisphenol A concentrations in men and women. Environ Health Perspect 2008;116(2):173–178.PubMedCrossRefGoogle Scholar
  63. 63.
    Arakawa C, Fujimaki K, Yoshinaga J, Imai H, Serizawa S, Shiraishi H. Daily urinary excretion of bisphenol A. Environ Health Prev Med 2004;9(1):22–26.PubMedCrossRefGoogle Scholar
  64. 64.
    Dietrich KN, Eskenazi B, Schantz S, Yolton K, Rauh VA, Johnson CB, et al. Principles and Practices of neurodevelopmental assessment in children: lessons learned from the Centers for Children’s Environmental Health and Disease Prevention Research. Environ Health Perspect 2005;113(10):1437–1446.PubMedCrossRefGoogle Scholar
  65. 65.
    Rice D, Barone SJ. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 2000;103(Suppl 3):511–533.Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Joanna Jurewicz
    • 1
    • 2
    Email author
  • Kinga Polańska
    • 1
  • Wojciech Hanke
    • 1
  1. 1.Department of Environmental EpidemiologyNofer Institute of Occupational MedicineŁódźPoland
  2. 2.Department of Environmental EpidemiologyNofer Institute of Occupational MedicineŁódźPoland

Personalised recommendations