Translational Neuroscience

, Volume 5, Issue 1, pp 57–63 | Cite as

Pertussis vaccine-induced experimental autoimmune encephalomyelitis in mice

  • Aleksandra Stojković
  • Irina Maslovarić
  • Dejana Kosanović
  • Dušan Vučetić
Research Article

Abstract

Background

A small dose of the Bordetella pertussis vaccine is used as an adjuvant for the induction of experimental autoimmune encephalomyelitis (EAE) in mice. The effects of two doses of the Pertussis vaccine on clinical signs, antibody titers, and the expression of CD4 and MHC molecules in brain tissue sections of mice with EAE were examined.

Methodology

EAE was induced by spinal cord homogenate in Complete Freund adjuvant (CFA) in 30 of 40 C57BL/6 mice divided in groups: EAE mice with a small adjuvant dose of the Pertussis vaccine (EAE-1), EAE mice with a human dose of the Pertussis vaccine (EAE-2), EAE mice (EAE-3).

Results

None of the mice from the EAE groups progressed to severe EAE. Five mice from the EAE-2 group were found dead on the 13th day post-immunization. A significant increase of anti-MOG (myelin oligodendrocyte glycoprotein) antibodies was detected in mice with EAE compared to non-treated mice. Myelin loss and brain tissue lesions were observed in EAE-1 and EAE-2 mice compared to EAE-3 and non-treated mice. A high expression of MHC-II and a mild expression of MHC-I was detected in the brains of mice with EAE. No expressions were detected in intact brains. Scattered CD4-positive cells were detected in the brains of EAE-1 and EAE-2 mice compared to EAE-3 and non-treated mice.

Conclusion

A small dose of the Bordetella pertussis vaccine could maintain the developed clinical signs and histological changes in mice with EAE, while higher doses led to additional adverse effects. The expression of CD4 and MHC class I and II molecules, as well as an increase in anti-MOG antibodies could be used as markers capable of monitoring the development and progression of EAE.

Keywords

Autoimmunity EAE MHC molecules Pertussis vaccine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Toplak N., Avcin T., Influenza and autoimmunity, Ann. NY Acad. Sci., 2009, 1173, 619–629PubMedCrossRefGoogle Scholar
  2. [2]
    Shoenfeld Y., Aron-Maor A., Vaccination and autoimmunity — ‘Vaccinosis’ a dangerous liaison?, J. Autoimmun., 2000, 14, 1–10PubMedCrossRefGoogle Scholar
  3. [3]
    Weber M.S., Benkhoucha M., Lehmann-Horn K., Hertzenberg D., Sellner J., Santiago-Raber M.L., et al., Repetitive pertussis toxin promotes development of regulatory T cells and prevents central nervous system autoimmune disease, PLoS One, 2010, 5, e16009PubMedCentralPubMedCrossRefGoogle Scholar
  4. [4]
    Carrizosa A.M., Nicholson L., Farzan M., Southwood S., Sette A., Sobel R.A., et al., Expansion of self antigen is necessary for the induction of experimental autoimmune encephalomyelitis by T cells primed with a cross-reactive enviromental antigen, J. Immunol., 1998, 161, 3307–3314PubMedGoogle Scholar
  5. [5]
    Sakuma H., Kohyama K., Park I., Miyakoshi A., Tanuma N., Matsumoto Y., Clinicopathological study of a myelin oligodendrocyte glycoprotein-induced demyelinating disease in LEW.1AV1 rats, Brain, 2004, 127, 2201–2213PubMedCrossRefGoogle Scholar
  6. [6]
    Brückener K.E., el Bayâ A., Galla H.J., Schmidt M.A., Permeabilization in a cerebral endothelial barrier model by pertussis toxin involves the PKC effector pathway and is abolished by elevated levels of cAMP, J. Cell. Sci., 2003, 116, 1837–1846PubMedCrossRefGoogle Scholar
  7. [7]
    Frei K., Eugster H., Bopst M., Constantinescu C.S., Lavi E., Fontana A., Tumor necrosis factor α and lymphotoxin α are not required for induction of acute experimental autoimmune encephalomyelitis, J. Exp. Med., 1997, 185, 2177–2182PubMedCentralPubMedCrossRefGoogle Scholar
  8. [8]
    Cua D.J., Hutchins B., LaFace D.M., Stohlman S.A., Coffman R.L., Central nervous system expression IL-10 inhibits autoimmune encephalomyelitis, J. Immunol., 2001, 166, 602–608PubMedCrossRefGoogle Scholar
  9. [9]
    Donnelly S., Loscher C.E., Lynch M.A., Mills K.H.G., Whole-cell but not acellular pertussis vaccine induce convulsive activity in mice: evidence of a role for toxin-induced interleukin-1b in a new murine model for analysis of neuronal side effects of vaccination, Infect. Immun., 2001, 69, 4217–4223PubMedCentralPubMedCrossRefGoogle Scholar
  10. [10]
    Hickey W.F., Migration of hematogenous cells through the bloodbrain barrier and the initiation of CNS inflammation, Brain. Pathol., 1991, 1, 97–105PubMedCrossRefGoogle Scholar
  11. [11]
    Brabb T., von Dassow P., Ordonez N., Schnabel B., Duke B., Goverman J., In situ tolerance within the central nervous system as a mechanism for preventing autoimmunity, J. Exp. Med., 2000, 192, 871–880PubMedCentralPubMedCrossRefGoogle Scholar
  12. [12]
    Stampachiacchiere B., Aloe L., Differential modulatory effect of NGF on MHC class I and class II expression in spinal cord cells of EAE rats, J. Neuroimmunol., 2005, 169, 20–30PubMedCrossRefGoogle Scholar
  13. [13]
    Bö L., Mörk S., Kong P., Nyland H., Pardo C.A., Trapp B.D., Detection of MHC class II-antigens on macrophages and microglia, but not on astrocytes and endothelia in active multiplesclerosis lessions, J. Neuroimmunol., 1994, 51, 135–46PubMedCrossRefGoogle Scholar
  14. [14]
    Greter M., Heppner F.L., Lemos M.P., Odermatt B.M., Goebels N., Laufer T., et al., Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis, Nat. Med., 2005, 11, 328–334PubMedCrossRefGoogle Scholar
  15. [15]
    Lalive P.H., Auto antibodies in inflammatory demyelinating diseases of the central nervous system, Swiss Med. Wkly., 2008, 138, 692–707PubMedGoogle Scholar
  16. [16]
    Lalive P.H., Molnarfi N., Benkhoucha M., Weber M.S., Santiago-Raber M., Antibody response in MOG(35-55) induced EAE, J. Neuroimmunol., 2011, 240–241, 28–33PubMedCrossRefGoogle Scholar
  17. [17]
    Lyons J.A., Ramsbottom M.J., Cross A.H., Critical role of antigenspecific antibody in experimental autoimmune encephalomyelitis induced by recombinant myelin oligodendrocyte glycoprotein, Eur. J. Immunol., 2002, 32, 1905–13PubMedCrossRefGoogle Scholar
  18. [18]
    Mills K.H.G., Ryan M., Ryan E., Mahon B.P., A murine model in which protection correlates with pertussis vaccine efficacy inchildren reveals complementary roles for humoral and cell-mediated immunity in protection against Bordetella pertussis, Infect. Immun., 1998, 66, 594–602PubMedCentralPubMedGoogle Scholar
  19. [19]
    Voller A., Bidwell D., Bartlett A., Enzyme immunoassays in diagnostic medicine. Theory and practice, Bull. World Health Organ., 1976, 53, 55–65PubMedCentralPubMedGoogle Scholar
  20. [20]
    Stevanovic I., Ninkovic M., Stojanovic I., Ljubisavljevic S., Stojnev S., Bokonjic D., Beneficial effect of agmatine in the acute phase of experimental autoimmune encephalomyelitis in iNOS-/- knockout mice, Chem. Biol. Interact., 2013, 206, 309–318PubMedCrossRefGoogle Scholar
  21. [21]
    Amiel S.A., The effects of Bordetella pertussis vaccine on cerebral vascular permeability, Br. J. Exp. Path., 1976, 57, 653–662Google Scholar
  22. [22]
    Steinman L., Weiss A., Adelman N., Lim M., Oehlert J., Zuniga R., et al., Murine model for pertussis vaccine encephalopathy: role of the major histocompatibility complex; antibody to albumin and to Bordetella pertussis and pertussis toxin, Dev. Biol. Stand., 1985, 61, 439–446PubMedGoogle Scholar
  23. [23]
    Flexner S., Postvaccinal encephalitis and allied conditions, JAMA, 1930, 94, 305–311CrossRefGoogle Scholar
  24. [24]
    Ziemssen T., Ziemssen F., The role of the humoral immune system in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE), Autoimmun. Rev., 2005, 4, 460–467PubMedCrossRefGoogle Scholar
  25. [25]
    Quintana F.J., Cohen I.R., Autoantibody patterns in diabetes-prone NOD mice and in standard C57BL/6 mice, J. Autoimmun. 2001, 17, 191–197PubMedCrossRefGoogle Scholar
  26. [26]
    Brunner C., Lassmann H., Waehneldt T.V., Matthieu J., Linington C., Differential ultrastructural localization of myelin basic protein, myelin/oligodendroglial glycoprotein, and 2′,3′-cyclic nucleotide 3′-phosphodiesterase in the CNS of adult rats, J. Neurochemistry, 1989, 52, 296–304CrossRefGoogle Scholar
  27. [27]
    Linington C., Bradl M., Lassmann H., Brunner C., Vass K., Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein, Am. J. Pathol., 1988, 130, 443–454PubMedCentralPubMedGoogle Scholar
  28. [28]
    Schluesener H.J., Sobel R.A., Linington C., Weiner H.L., A monoclonal antibody against a myelin oligodendrocyte glycoprotein induces relapses and demyelination in central nervous system autoimmune disease, J. Immunol. 1987, 139, 4016–4021PubMedGoogle Scholar
  29. [29]
    Almolda B., Costa M., Montoya M., Gonzalez B., Castellano B., CD4 microglial expression correlates with spontaneous clinical improvement in the acute Lewis rat EAE model, J. Neuroimmunol., 2009, 209, 65–80PubMedCrossRefGoogle Scholar
  30. [30]
    Heppner F.L., Greter M., Marino D., Falsig J., Raivich G., Hovelmeyer N., et al., Experimental autoimmune encephalomyelitis repressed by microglial paralysis, Nat. Med., 2005, 11, 146–152PubMedCrossRefGoogle Scholar
  31. [31]
    Carson M.J., Bilousova T.V., Puntambekar S.S., Melchior B., Doose J.M., Ethell I.M., A rose by any other name? The potential consequences of microglial heterogeneity during CNS health and disease, Neurotherapeutics, 2007, 4, 571–579PubMedCentralPubMedCrossRefGoogle Scholar
  32. [32]
    Almolda B., Gonzalez B., Castellano B., Activated microglial cells acquire an immature dendritic cell phenotype and may terminate the immune response in an acute model of EAE, J. Neuroimmunol., 2010, 223, 39–54PubMedCrossRefGoogle Scholar
  33. [33]
    Stojkovic A., Kosanovic D., Maslovaric I., Jovanova-Nesic K., Role of inactivated influenza vaccine in regulation of experimental autoimmune encephalomyelitis, Int. J. Neurosci., 2014, 124, 139–147PubMedCrossRefGoogle Scholar
  34. [34]
    Höftberger R., Aboul-Enein F., Brueck W., Lucchinetti C., Rodriguez M., Schmidbauer M., et al., Expression of major histocompatibility complex class I molecules on the different cell types in multiple sclerosis lesions, Brain. Pathol., 2004, 14, 43–50PubMedCrossRefGoogle Scholar
  35. [35]
    Horwitz M.S., Evans C.F., Klier F.G., Oldstone M.B., Detailed in vivo analysis of interferon-gamma induced major histocompatibility complex expression in the the central nervous system: astrocytes fail to express major histocompatibility complex class I and II molecules, Lab. Invest., 1999, 79, 235–242PubMedGoogle Scholar
  36. [36]
    Neumann H., Cavalie A., Jenne D.E., Wekerle H., Induction of MHC class I genes in neurons, Science, 1995, 269, 549–552PubMedCrossRefGoogle Scholar
  37. [37]
    Neumann H., Medana I.M., Bauer J., Lassmann H., Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases, Trends Neurosci., 2002, 25, 313–319PubMedCrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2014

Authors and Affiliations

  • Aleksandra Stojković
    • 1
  • Irina Maslovarić
    • 2
  • Dejana Kosanović
    • 2
  • Dušan Vučetić
    • 3
    • 4
  1. 1.Faculty of PharmacyUniversity of BijeljinaBijeljinaRepublika Srpska Bosnia and Herzegovina
  2. 2.Biomedical Center of the Institute TorlakBelgradeSerbia
  3. 3.Institute for Transfusiology and Hemobiology of the Military Medical AcademyBelgradeSerbia
  4. 4.Faculty of Medicine of the Military Medical AcademyUniversity of DefenseBelgradeSerbia

Personalised recommendations