Translational Neuroscience

, Volume 4, Issue 4, pp 437–447 | Cite as

Social cognition in major depressive disorder: A new paradigm?

  • Pablo Billeke
  • Samantha Boardman
  • P. Murali Doraiswamy
Review Article

Abstract

Social cognition refers to the brain mechanisms by which we process social information about other humans and ourselves. Alterations in interpersonal and social functioning are common in major depressive disorder, though only poorly addressed by current pharmacotherapies. Further standardized tests, such as depression ratings or neuropsychologic tests, used in routine practice provide very little information on social skills, schemas, attributions, stereotypes and judgments related to social interactions. In this article, we review recent literature on how healthy human brains process social decisions and how these processes are altered in major depressive disorder. We especially focus on interactive paradigms (e.g., game theory based tasks) that can reproduce daily life situations in laboratory settings. The evidences we review, together with the rich literature on the protective role of social networks in handling stress, have implications for developing more ecologically-valid biomarkers and interventions in order to optimize functional recovery in depressive disorders.

Keywords

Social neuroscience Social functioning Game theory Social dilemmas fMRI EEG 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Kessler R.C., Berglund P., Demler O., Jin R., Koretz D., Merikangas K.R., et al., The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R), JAMA, 2003, 289, 3095–3105PubMedGoogle Scholar
  2. [2]
    Romera I., Perez V., Menchón J.M., Delgado-Cohen H., Polavieja P., Gilaberte I., Social and occupational functioning impairment in patients in partial versus complete remission of a major depressive disorder episode. A six-month prospective epidemiological study, Eur. Psychiatry, 2010, 25, 58–65PubMedGoogle Scholar
  3. [3]
    Bauwens F., Pardoen D., Staner L., Dramaix M., Mendlewicz J., Social adjustment and the course of affective illness: a one-year controlled longitudinal study involving bipolar and unipolar outpatients, Depress. Anxiety, 1998, 8, 50–57PubMedGoogle Scholar
  4. [4]
    Nezlek J.B., Hampton C.P., Shean G.D., Clinical depression and day-today social interaction in a community sample, J. Abnorm. Psychol., 2000, 109, 11–19PubMedGoogle Scholar
  5. [5]
    Beesdo K., Bittner A., Pine D.S., Stein M.B., Höfler M., Lieb R., et al., Incidence of social anxiety disorder and the consistent risk for secondary depression in the first three decades of life, Arch. Gen. Psychiatry, 2007, 64, 903–912PubMedGoogle Scholar
  6. [6]
    Adolphs R., Social cognition and the human brain, Trends Cogn. Sci., 1999, 3, 469–479PubMedGoogle Scholar
  7. [7]
    De Jaegher H., Di Paolo E., Gallagher S., Can social interaction constitute social cognition?, Trends Cogn. Sci., 2010, 14, 441–447PubMedGoogle Scholar
  8. [8]
    Billeke P., Aboitiz F., Social cognition in schizophrenia: from social stimuli processing to social engagement, Front. Psychiatry, 2013, 4, 1–12Google Scholar
  9. [9]
    Sanfey A.G., Social decision-making: insights from game theory and neuroscience, Science, 2007, 318, 598–602PubMedGoogle Scholar
  10. [10]
    Rilling J.K., Sanfey A.G., The neuroscience of social decision-making, Annu. Rev. Psychol., 2011, 62, 23–48PubMedGoogle Scholar
  11. [11]
    Frith C.D., Frith U., Mechanisms of social cognition, Annu. Rev. Psychol., 2012, 63, 287–313PubMedGoogle Scholar
  12. [12]
    Declerck C.H., Boone C., Emonds G., When do people cooperate? The neuroeconomics of prosocial decision making, Brain Cogn., 2013, 81, 95–117PubMedGoogle Scholar
  13. [13]
    Cusi A.M., Nazarov A., Holshausen K., Macqueen G.M., McKinnon M.C., Systematic review of the neural basis of social cognition in patients with mood disorders, J. Psychiatry Neurosci., 2012, 37, 154–169PubMedCentralPubMedGoogle Scholar
  14. [14]
    Lam R.W., Filteau M.-J., Milev R., Clinical effectiveness: the importance of psychosocial functioning outcomes, J. Affect. Disord., 2011, 132,Suppl., S9–S13PubMedGoogle Scholar
  15. [15]
    Schnall S., Harber K.D., Stefanucci J.K., Proffitt D.R., Social support and the perception of geographical slant, J. Exp. Soc. Psychol., 2008, 44, 1246–1255PubMedCentralPubMedGoogle Scholar
  16. [16]
    Coan J.A., Schaefer H.S., Davidson R.J., Lending a hand: social regulation of the neural response to threat, Psychol. Sci., 2006, 17, 1032–1039PubMedGoogle Scholar
  17. [17]
    Gable S.L., Gosnell C.L., The positive side of close relationships, In: Sheldon K.M., Kashdan T.B., Steger M.F. (Eds.), Designing positive psychology: taking stock and Moving Forward, Oxford University Press, New York, USA, 2011, 265–279Google Scholar
  18. [18]
    Kok B.E., Coffey K.A., Cohn M.A., Catalino L.I., Vacharkulksemsuk T., Algoe S.B., et al., How positive emotions build physical health: perceived positive social connections account for the upward spiral between positive emotions and vagal tone, Psychol. Sci., 2013, 24, 1123–1132PubMedGoogle Scholar
  19. [19]
    Vaillant G., Spiritual evolution: a scientific defense of faith, Broadway Books, New York, USA, 2008Google Scholar
  20. [20]
    Eisenberger N.I., The pain of social disconnection: examining the shared neural underpinnings of physical and social pain, Nat. Rev. Neurosci., 2012, 13, 421–434PubMedGoogle Scholar
  21. [21]
    Smith K.P., Christakis N.A., Social networks and health, Annu. Rev. Sociol., 2008, 34, 405–429Google Scholar
  22. [22]
    Carter G.C., Cantrell R.A., Zarotsky V., Haynes V.S., Phillips G., Alatorre C.I., et al., Comprehensive review of factors implicated in the heterogeneity of response in depression, Depress. Anxiety, 2012, 29, 340–354PubMedGoogle Scholar
  23. [23]
    George L.K., Blazer D.G., Hughes D.C., Fowler N., Social support and the outcome of major depression, Br. J. Psychiatry, 1989, 154, 478–485PubMedGoogle Scholar
  24. [24]
    Zimmer Z., Chen F.-F., Social support and change in depression among older adults in Taiwan, J. Appl. Gerontol., 2011, 31, 764–782Google Scholar
  25. [25]
    Cohen S., Wills T.A., Stress, social support, and the buffering hypothesis, Psychol. Bull., 1985, 98, 310–357PubMedGoogle Scholar
  26. [26]
    Rosenquist J.N., Fowler J.H., Christakis N.A., Social network determinants of depression, Mol. Psychiatry, 2011, 16, 273–281PubMedGoogle Scholar
  27. [27]
    Marchand W.R., Yurgelun-Todd D., Striatal structure and function in mood disorders: a comprehensive review, Bipolar Disord., 2010, 12, 764–785PubMedGoogle Scholar
  28. [28]
    Eshel N., Roiser J.P., Reward and punishment processing in depression, Biol. Psychiatry, 2010, 68, 118–124PubMedGoogle Scholar
  29. [29]
    Russo S.J., Nestler E.J., The brain reward circuitry in mood disorders, Nat. Rev. Neurosci., 2013, 14, 609–625PubMedGoogle Scholar
  30. [30]
    Marchetti I., Koster E.H.W., Sonuga-Barke E.J., De Raedt R., The default mode network and recurrent depression: a neurobiological model of cognitive risk factors, Neuropsychol. Rev., 2012, 22, 229–251PubMedGoogle Scholar
  31. [31]
    Steffens D.C., Wagner H.R., Levy R.M., Horn K.A., Krishnan K.R., Performance feedback deficit in geriatric depression, Biol. Psychiatry, 2001, 50, 358–363PubMedGoogle Scholar
  32. [32]
    Elliott R., Sahakian B.J., Herrod J.J., Robbins T.W., Paykel E.S., Abnormal response to negative feedback in unipolar depression: evidence for a diagnosis specific impairment, J. Neurol. Neurosurg. Psychiatry, 1997, 63, 74–82PubMedGoogle Scholar
  33. [33]
    Elliott R., Sahakian B.J., McKay A.P., Herrod J.J., Robbins T.W., Paykel E.S., Neuropsychological impairments in unipolar depression: the influence of perceived failure on subsequent performance, Psychol. Med., 2009, 26, 975–989Google Scholar
  34. [34]
    Pizzagalli D.A., Holmes A.J., Dillon D.G., Goetz E.L., Birk J.L., Bogdan R., et al., Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder, Am. J. Psychiatry, 2009, 166, 702–710PubMedCentralPubMedGoogle Scholar
  35. [35]
    Pizzagalli D.A., Jahn A.L., O’Shea J.P., Toward an objective characterization of an anhedonic phenotype: a signal-detection approach, Biol. Psychiatry, 2005, 57, 319–327PubMedCentralPubMedGoogle Scholar
  36. [36]
    Forbes E.E., Hariri A.R., Martin S.L., Silk J.S., Moyles D.L., Fisher P.M., et al., Altered striatal activation predicting real-world positive affect in adolescent major depressive disorder, Am. J. Psychiatry, 2009, 166, 64–73PubMedCentralPubMedGoogle Scholar
  37. [37]
    McCabe C., Cowen P.J., Harmer C.J., Neural representation of reward in recovered depressed patients, Psychopharmacology, 2009, 205, 667–677PubMedCentralPubMedGoogle Scholar
  38. [38]
    Koolschijn P.C.M.P., van Haren N.E.M., Lensvelt-Mulders G.J.L.M., Hulshoff Pol H.E., Kahn R.S., Brain volume abnormalities in major depressive disorder: a meta-analysis of magnetic resonance imaging studies, Hum. Brain Mapp., 2009, 30, 3719–3735PubMedGoogle Scholar
  39. [39]
    Surguladze S., Brammer M.J., Keedwell P., Giampietro V., Young A.W., Travis M.J., Williams S.C.R., et al., A differential pattern of neural response toward sad versus happy facial expressions in major depressive disorder, Biol. Psychiatry, 2005, 57, 201–209PubMedGoogle Scholar
  40. [40]
    Keedwell P.A., Andrew C., Williams S.C.R., Brammer M.J., Phillips M.L., A double dissociation of ventromedial prefrontal cortical responses to sad and happy stimuli in depressed and healthy individuals, Biol. Psychiatry, 2005, 58, 495–503PubMedGoogle Scholar
  41. [41]
    Epstein J., Pan H., Kocsis J.H., Yang Y., Butler T., Chusid J., et al., Lack of ventral striatal response to positive stimuli in depressed versus normal subjects, Am. J. Psychiatry, 2006, 163, 1784–1790PubMedGoogle Scholar
  42. [42]
    Keedwell P.A., Andrew C., Williams S.C.R., Brammer M.J., Phillips M.L., The neural correlates of anhedonia in major depressive disorder, Biol. Psychiatry, 2005, 58, 843–853PubMedGoogle Scholar
  43. [43]
    Fox M.D., Raichle M.E., Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging, Nat. Rev. Neurosci., 2007, 8, 700–711PubMedGoogle Scholar
  44. [44]
    Sheline Y.I., Barch D.M., Price J.L., Rundle M.M., Vaishnavi S.N., Snyder A.Z., et al., The default mode network and self-referential processes in depression, Proc. Natl. Acad. Sci USA, 2009, 106, 1942–1947PubMedGoogle Scholar
  45. [45]
    Hamilton J.P., Furman D.J., Chang C., Thomason M.E., Dennis E., Gotlib I.H., Default-mode and task-positive network activity in major depressive disorder: implications for adaptive and maladaptive rumination, Biol. Psychiatry, 2011, 70, 327–333PubMedCentralPubMedGoogle Scholar
  46. [46]
    Delaveau P., Jabourian M., Lemogne C., Guionnet S., Bergouignan L., Fossati P., Brain effects of antidepressants in major depression: a meta-analysis of emotional processing studies, J. Affect. Disord., 2011, 130, 66–74PubMedGoogle Scholar
  47. [47]
    Mayberg H.S., Lozano A.M., Voon V., McNeely H.E., Seminowicz D., Hamani C., et al., Deep brain stimulation for treatment-resistant depression, Neuron, 2005, 45, 651–660PubMedGoogle Scholar
  48. [48]
    Greicius M.D., Flores B.H., Menon V., Glover G.H., Solvason H.B., Kenna H., et al., Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus, Biol. Psychiatry, 2007, 62, 429–437PubMedCentralPubMedGoogle Scholar
  49. [49]
    O’Doherty J.P., Reward representations and reward-related learning in the human brain: insights from neuroimaging, Curr. Opin. Neurobiol., 2004, 14, 769–776PubMedGoogle Scholar
  50. [50]
    Wise R.A., Brain reward circuitry: insights from unsensed incentives, Neuron, 2002, 36, 229–240PubMedGoogle Scholar
  51. [51]
    Schultz W., Behavioral dopamine signals, Trends Neurosci., 2007, 30, 203–210PubMedGoogle Scholar
  52. [52]
    Lee D., Game theory and neural basis of social decision making, Nat. Neurosci., 2008, 11, 404–409PubMedCentralPubMedGoogle Scholar
  53. [53]
    Sally D., Conversation and cooperation in social dilemmas: a metaanalysis of experiments from 1958 to 1992, Ration. Soc., 1995, 7, 58–92Google Scholar
  54. [54]
    Rilling J.K., Sanfey A.G., Aronson J.A., Nystrom L.E., Cohen J.D., Opposing BOLD responses to reciprocated and unreciprocated altruism in putative reward pathways, Neuroreport, 2004, 15, 2539–2543PubMedGoogle Scholar
  55. [55]
    Rilling J., Gutman D., Zeh T., Pagnoni G., Berns G., Kilts C., A neural basis for social cooperation, Neuron, 2002, 35, 395–405PubMedGoogle Scholar
  56. [56]
    Fehr E., Camerer C.F., Social neuroeconomics: the neural circuitry of social preferences, Trends Cogn. Sci., 2007, 11, 419–427PubMedGoogle Scholar
  57. [57]
    Decety J., Jackson P.L., Sommerville J.A., Chaminade T., Meltzoff A.N., The neural bases of cooperation and competition: an fMRI investigation, Neuroimage, 2004, 23, 744–751PubMedCentralPubMedGoogle Scholar
  58. [58]
    Tabibnia G., Satpute A.B., Lieberman M.D., The sunny side of fairness: preference for fairness activates reward circuitry (and disregarding unfairness activates self-control circuitry), Psychol. Sci., 2008, 19, 339–347PubMedGoogle Scholar
  59. [59]
    Depue R.A., Morrone-Strupinsky J.V.. A neurobehavioral model of affiliative bonding: implications for conceptualizing a human trait of affiliation, Behav. Brain Sci., 2005, 28, 313–350, discussion 350–395PubMedGoogle Scholar
  60. [60]
    Miller E.K., Cohen J.D., An integrative theory of prefrontal cortex function, Annu. Rev. Neurosci., 2001, 24, 167–202PubMedGoogle Scholar
  61. [61]
    McClure S.M., Laibson D.I., Loewenstein G., Cohen J.D., Separate neural systems value immediate and delayed monetary rewards, Science, 2004, 306, 503–507PubMedGoogle Scholar
  62. [62]
    Steinbeis N., Bernhardt B.C., Singer T., Impulse control and underlying functions of the left DLPFC mediate age-related and age-independent individual differences in strategic social behavior, Neuron, 2012, 73, 1040–1051PubMedGoogle Scholar
  63. [63]
    Sanfey A.G., Rilling J.K., Aronson J.A., Nystrom L.E., Cohen J.D., The neural basis of economic decision-making in the Ultimatum Game, Science, 2003, 300, 1755–1758PubMedGoogle Scholar
  64. [64]
    Kringelbach M.L., Rolls E.T., The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology, Prog. Neurobiol., 2004, 72, 341–372PubMedGoogle Scholar
  65. [65]
    Emonds G., Declerck C.H., Boone C., Vandervliet E.J.M., Parizel P.M., The cognitive demands on cooperation in social dilemmas: an fMRI study, Soc. Neurosci., 2012, 7, 494–509PubMedGoogle Scholar
  66. [66]
    Gehring W.J., Willoughby A.R., The medial frontal cortex and the rapid processing of monetary gains and losses, Science, 2002, 295, 2279–2282PubMedGoogle Scholar
  67. [67]
    Luu P., Tucker D.M., Derryberry D., Reed M., Poulsen C., Electrophysiological responses to errors and feedback in the process of action regulation, Psychol. Sci., 2003, 14, 47–53PubMedGoogle Scholar
  68. [68]
    Billeke P., Zamorano F., Cosmelli D., Aboitiz F., Oscillatory brain activity correlates with risk perception and predicts social decisions, Cereb. Cortex, 2013, 23, 2872–2883PubMedGoogle Scholar
  69. [69]
    Boksem M., De Cremer D., Fairness concerns predict medial frontal negativity amplitude in ultimatum bargaining, Soc. Neurosci., 2010, 5, 118–128PubMedGoogle Scholar
  70. [70]
    Campanhã C., Minati L., Fregni F., Boggio P.S., Responding to unfair offers made by a friend: neuroelectrical activity changes in the anterior medial prefrontal cortex, J. Neurosci., 2011, 31, 15569–15574PubMedGoogle Scholar
  71. [71]
    Tootell R.B.H., Devaney K.J., Young J.C., Postelnicu G., Rajimehr R., Ungerleider L.G., fMRI mapping of a morphed continuum of 3D shapes within inferior temporal cortex, Proc. Natl. Acad. Sci USA, 2008, 105, 3605–3609PubMedGoogle Scholar
  72. [72]
    Allison T., Puce A., McCarthy G., Social perception from visual cues: role of the STS region, Trends Cogn. Sci., 2000, 4, 267–278PubMedGoogle Scholar
  73. [73]
    Van Overwalle F., Social cognition and the brain: a meta-analysis, Hum. Brain Mapp., 2009, 30, 829–858PubMedGoogle Scholar
  74. [74]
    Van Overwalle F., A dissociation between social mentalizing and general reasoning, Neuroimage, 2011, 54, 1589–1599PubMedGoogle Scholar
  75. [75]
    Van Overwalle F., Baetens K., Understanding others’ actions and goals by mirror and mentalizing systems: a meta-analysis, Neuroimage, 2009, 48, 564–584PubMedGoogle Scholar
  76. [76]
    Acevedo M., Krueger J.I., Evidential reasoning in the prisoner’s dilemma, Am. J. Psychol., 2005, 118, 431–457PubMedGoogle Scholar
  77. [77]
    Ma N., Vandekerckhove M., Van Overwalle F., Seurinck R., Fias W., Spontaneous and intentional trait inferences recruit a common mentalizing network to a different degree: spontaneous inferences activate only its core areas, Soc. Neurosci., 2011, 6, 123–138PubMedGoogle Scholar
  78. [78]
    Amodio D.M., Frith C.D., Meeting of minds: the medial frontal cortex and social cognition, Nat. Rev. Neurosci., 2006, 7, 268–277PubMedGoogle Scholar
  79. [79]
    Frith C.D., Singer T., The role of social cognition in decision making, Philos. Trans. R. Soc. Lond. B, 2008, 363, 3875–3886Google Scholar
  80. [80]
    Rilling J.K., Sanfey A.G., Aronson J.A., Nystrom L.E., Cohen J.D., The neural correlates of theory of mind within interpersonal interactions, Neuroimage, 2004, 22, 1694–1703PubMedGoogle Scholar
  81. [81]
    Carter R.M., Bowling D.L., Reeck C., Huettel S.A., A distinct role of the temporal-parietal junction in predicting socially guided decisions, Science, 2012, 337, 109–111PubMedCentralPubMedGoogle Scholar
  82. [82]
    Laufs H., Kleinschmidt A., Beyerle A., Eger E., Salek-Haddadi A., Preibisch C., et al., EEG-correlated fMRI of human alpha activity, Neuroimage, 2003, 19, 1463–1476PubMedGoogle Scholar
  83. [83]
    Leppänen J.M., Milders M., Bell J.S., Terriere E., Hietanen J.K., Depression biases the recognition of emotionally neutral faces, Psychiatry Res., 2004, 128, 123–133PubMedGoogle Scholar
  84. [84]
    Gotlib I.H., Krasnoperova E., Yue D.N., Joormann J., Attentional biases for negative interpersonal stimuli in clinical depression, J. Abnorm. Psychol., 2004, 113, 121–135PubMedGoogle Scholar
  85. [85]
    Gotlib I.H., Kasch K.L., Traill S., Joormann J., Arnow B.A., Johnson S.L., Coherence and specificity of information-processing biases in depression and social phobia, J. Abnorm. Psychol., 2004, 113, 386–398PubMedGoogle Scholar
  86. [86]
    Fuentes P., Barrós-Loscertales A., Bustamante J.C., Rosell P., Costumero V., Avila C., Individual differences in the Behavioral Inhibition System are associated with orbitofrontal cortex and precuneus gray matter volume, Cogn. Affect. Behav. Neurosci., 2012, 12, 491–498PubMedGoogle Scholar
  87. [87]
    Townsend J.D., Eberhart N.K., Bookheimer S.Y., Eisenberger N.I., Foland-Ross L.C., Cook I.A., et al., fMRI activation in the amygdala and the orbitofrontal cortex in unmedicated subjects with major depressive disorder, Psychiatry Res., 2010, 183, 209–217PubMedCentralPubMedGoogle Scholar
  88. [88]
    Suslow T., Konrad C., Kugel H., Rumstadt D., Zwitserlood P., Schöning S., et al., Automatic mood-congruent amygdala responses to masked facial expressions in major depression, Biol. Psychiatry, 2010, 67, 155–160PubMedGoogle Scholar
  89. [89]
    Victor T.A., Furey M.L., Fromm S.J., Ohman A., Drevets W.C., Relationship between amygdala responses to masked faces and mood state and treatment in major depressive disorder, Arch. Gen. Psychiatry, 2010, 67, 1128–1138PubMedCentralPubMedGoogle Scholar
  90. [90]
    Surguladze S.A., El-Hage W., Dalgleish T., Radua J., Gohier B., Phillips M.L., Depression is associated with increased sensitivity to signals of disgust: a functional magnetic resonance imaging study, J. Psychiatr. Res., 2010, 44, 894–902PubMedGoogle Scholar
  91. [91]
    Peluso M.A., Glahn D.C., Matsuo K., Monkul E.S., Najt P., Zamarripa F., et al., Amygdala hyperactivation in untreated depressed individuals, Psychiatry Res., 2009, 173, 158–161PubMedCentralPubMedGoogle Scholar
  92. [92]
    Matthews S.C., Strigo I.A., Simmons A.N., Yang T.T., Paulus M.P., Decreased functional coupling of the amygdala and supragenual cingulate is related to increased depression in unmedicated individuals with current major depressive disorder, J. Affect. Disord., 2008, 111, 13–20PubMedGoogle Scholar
  93. [93]
    Dannlowski U., Ohrmann P., Bauer J., Kugel H., Arolt V., Heindel W., et al., Amygdala reactivity to masked negative faces is associated with automatic judgmental bias in major depression: a 3 T fMRI study, J. Psychiatry Neurosci., 2007, 32, 423–429PubMedCentralPubMedGoogle Scholar
  94. [94]
    Surguladze S., Brammer M.J., Keedwell P., Giampietro V., Young A.W., Travis M.J., et al., A differential pattern of neural response toward sad versus happy facial expressions in major depressive disorder, Biol. Psychiatry, 2005, 57, 201–209PubMedGoogle Scholar
  95. [95]
    Canli T., Cooney R.E., Goldin P., Shah M., Sivers H., Thomason M.E., et al., Amygdala reactivity to emotional faces predicts improvement in major depression, Neuroreport, 2005, 16, 1267–1270PubMedGoogle Scholar
  96. [96]
    Arnone D., McKie S., Elliott R., Thomas E.J., Downey D., Juhasz G., et al., Increased amygdala responses to sad but not fearful faces in major depression: relation to mood state and pharmacological treatment, Am. J. Psychiatry, 2012, 169, 841–850PubMedGoogle Scholar
  97. [97]
    Sheline Y.I., Barch D.M., Donnelly J.M., Ollinger J.M., Snyder A.Z., Mintun M.A., Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study, Biol. Psychiatry, 2001, 50, 651–658PubMedGoogle Scholar
  98. [98]
    Walsh N.D., Kim J., Andrew C.M., Pich E.M., Williams P.M., Reed L.J., et al., Attenuation of the neural response to sad faces in major depression by antidepressant treatment: a prospective, event-related functional magnetic resonance imaging study, Arch. Gen. Psychiatry, 2004, 61, 877–889PubMedGoogle Scholar
  99. [99]
    Lee B.-T., Seok J.-H., Lee B.-C., Cho S.W., Yoon B.-J., Lee K.-U., et al., Neural correlates of affective processing in response to sad and angry facial stimuli in patients with major depressive disorder, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2008, 32, 778–785PubMedGoogle Scholar
  100. [100]
    Fales C.L., Barch D.M., Rundle M.M., Mintun M.A., Snyder A.Z., Cohen J.D., et al., Altered emotional interference processing in affective and cognitive-control brain circuitry in major depression, Biol. Psychiatry, 2008, 63, 377–384PubMedCentralPubMedGoogle Scholar
  101. [101]
    Chechko N., Augustin M., Zvyagintsev M., Schneider F., Habel U., Kellermann T., Brain circuitries involved in emotional interference task in major depression disorder, J. Affect. Disord., 2013, 149, 136–145PubMedGoogle Scholar
  102. [102]
    Feeser M., Schlagenhauf F., Sterzer P., Park S., Stoy M., Gutwinski S., et al., Context insensitivity during positive and negative emotional expectancy in depression assessed with functional magnetic resonance imaging, Psychiatry Res., 2013, 212, 28–35PubMedGoogle Scholar
  103. [103]
    Frodl T., Bokde A.L.W., Scheuerecker J., Lisiecka D., Schoepf V., Hampel H., et al., Functional connectivity bias of the orbitofrontal cortex in drug-free patients with major depression, Biol. Psychiatry, 2010, 67, 161–167PubMedGoogle Scholar
  104. [104]
    Dannlowski U., Ohrmann P., Konrad C., Domschke K., Bauer J., Kugel H., et al., Reduced amygdala-prefrontal coupling in major depression: association with MAOA genotype and illness severity, Int. J. Neuropsychopharmacol., 2009, 12, 11–22PubMedGoogle Scholar
  105. [105]
    de Kwaasteniet B., Ruhe E., Caan M., Rive M., Olabarriaga S., Groefsema M., et al., Relation between structural and functional connectivity in major depressive disorder, Biol. Psychiatry, 2013, 74, 40–47PubMedGoogle Scholar
  106. [106]
    Phan K.L., Fitzgerald D.A., Nathan P.J., Moore G.J., Uhde T.W., Tancer M.E., Neural substrates for voluntary suppression of negative affect: a functional magnetic resonance imaging study, Biol. Psychiatry, 2005, 57, 210–219PubMedGoogle Scholar
  107. [107]
    Kettle J.W.L., O’Brien-Simpson L., Allen N.B., Impaired theory of mind in first-episode schizophrenia: comparison with community, university and depressed controls, Schizophr. Res., 2008, 99, 96–102PubMedGoogle Scholar
  108. [108]
    Wolkenstein L., Schönenberg M., Schirm E., Hautzinger M., I can see what you feel, but I can’t deal with it: impaired theory of mind in depression, J. Affect. Disord., 2011, 132, 104–111PubMedGoogle Scholar
  109. [109]
    Lee L., Harkness K.L., Sabbagh M.A., Jacobson J.A., Mental state decoding abilities in clinical depression, J. Affect. Disord., 2005, 86, 247–258PubMedGoogle Scholar
  110. [110]
    Wang Y.-G., Wang Y.-Q., Chen S.-L., Zhu C.-Y., Wang K., Theory of mind disability in major depression with or without psychotic symptoms: a componential view, Psychiatry Res., 2008, 161, 153–161PubMedGoogle Scholar
  111. [111]
    Cusi A.M., Nazarov A., Macqueen G.M., McKinnon M.C., Theory of mind deficits in patients with mild symptoms of major depressive disorder, Psychiatry Res., 2013, 11, 1–3Google Scholar
  112. [112]
    Fischer-Kern M., Fonagy P., Kapusta N.D., Luyten P., Boss S., Naderer A., et al., Mentalizing in female inpatients with major depressive disorder, J. Nerv. Ment. Dis., 2013, 201, 202–207PubMedGoogle Scholar
  113. [113]
    Uekermann J., Channon S., Lehmkämper C., Abdel-Hamid M., Vollmoeller W., Daum I., Executive function, mentalizing and humor in major depression, J. Int. Neuropsychol. Soc., 2008, 14, 55–62PubMedGoogle Scholar
  114. [114]
    Inoue Y., Yamada K., Kanba S., Deficit in theory of mind is a risk for relapse of major depression, J. Affect. Disord., 2006, 95, 125–127PubMedGoogle Scholar
  115. [115]
    Inoue Y., Tonooka Y., Yamada K., Kanba S., Deficiency of theory of mind in patients with remitted mood disorder, J. Affect. Disord., 2004, 82, 403–409PubMedGoogle Scholar
  116. [116]
    Humphrey N., The social function of intellect, In: Bateson P.P.G., Hinde R.A. (Eds.), Growing points in ethology, Cambridge University Press, Cambridge, UK, 1976, 303–317Google Scholar
  117. [117]
    Hokanson J.E., Sacco W.P., Blumberg S.R., Landrum G.C., Interpersonal behavior of depressive individuals in a mixed-motive game, J. Abnorm. Psychol., 1980, 89, 320–332PubMedGoogle Scholar
  118. [118]
    Hertel G., Neuhof J., Theuer T., Kerr N.L., Mood effects on cooperation in small groups: does positive mood simply lead to more cooperation?, Cogn. Emot., 2000, 14, 441–472Google Scholar
  119. [119]
    Kirchsteiger G., Rigotti L., Rustichini A., Your morals might be your moods, J. Econ. Behav. Organ., 2006, 59, 155–172Google Scholar
  120. [120]
    Harlé K.M., Allen J.J.B., Sanfey A.G., The impact of depression on social economic decision making, J. Abnorm. Psychol., 2010, 119, 440–446PubMedCentralPubMedGoogle Scholar
  121. [121]
    Harlé K.M., Sanfey A.G., Incidental sadness biases social economic decisions in the Ultimatum Game, Emotion, 2007, 7, 876–881PubMedGoogle Scholar
  122. [122]
    Grecucci A., Giorgetta C., Van’t Wout M., Bonini N., Sanfey A.G., Reappraising the ultimatum: an fMRI study of emotion regulation and decision making, Cereb. Cortex, 2013, 23, 399–410PubMedGoogle Scholar
  123. [123]
    Destoop M., Schrijvers D., De Grave C., Sabbe B., De Bruijn E.R., Better to give than to take? Interactive social decision-making in severe major depressive disorder, J. Affect. Disord., 2012, 137, 98–105PubMedGoogle Scholar
  124. [124]
    Radke S., Schäfer I.C., Müller B.W., de Bruijn E.R., Do different fairness contexts and facial emotions motivate “irrational” social decision-making in major depression? An exploratory patient study, Psychiatry Res., 2013, 210, 438–443PubMedGoogle Scholar
  125. [125]
    Harkness K., Sabbagh M., Jacobson J., Chowdrey N., Chen T., Enhanced accuracy of mental state decoding in dysphoric college students, Cogn. Emot., 2005, 19, 999–1025Google Scholar
  126. [126]
    Harkness K.L., Jacobson J.A., Sinclair B., Chan E., Sabbagh M.A., For love or money? What motivates people to know the minds of others?, Cogn. Emot., 2012, 26, 541–549PubMedGoogle Scholar
  127. [127]
    Forgas J.P., Mood and judgment: the affect infusion model (AIM), Psychol. Bull., 1995, 117, 39–66PubMedGoogle Scholar
  128. [128]
    Lane J.D., DePaulo B.M., Completing Coyne’s cycle: dysphorics’ ability to detect deception, J. Res. Pers., 1999, 33, 311–329Google Scholar
  129. [129]
    Andrews P.W., Thomson J.A., The bright side of being blue: depression as an adaptation for analyzing complex problems, Psychol. Rev., 2009, 116, 620–654PubMedCentralPubMedGoogle Scholar
  130. [130]
    Von Helversen B., Wilke A., Johnson T., Schmid G., Klapp B., Performance benefits of depression: sequential decision making in a healthy sample and a clinically depressed sample, J. Abnorm. Psychol., 2011, 120, 962–968Google Scholar
  131. [131]
    Watson P.J., Andrews P.W., Toward a revised evolutionary adaptationist analysis of depression: the social navigation hypothesis, J. Affect. Disord., 2002, 72, 1–14PubMedGoogle Scholar
  132. [132]
    Barrett L.F., Satpute A.B., Large-scale brain networks in affective and social neuroscience: towards an integrative functional architecture of the brain, Curr. Opin. Neurobiol., 2013, 23, 361–372PubMedGoogle Scholar
  133. [133]
    Batson C., How social an animal? The human capacity for caring, Am. Psychol., 1990, 45, 336–346Google Scholar
  134. [134]
    Meyer-Lindenberg A., Tost H., Neural mechanisms of social risk for psychiatric disorders, Nat. Neurosci., 2012, 15, 1–6Google Scholar
  135. [135]
    Castrén E., Neuronal network plasticity and recovery from depression, JAMA Psychiatry, 2013, 70, 983–989PubMedGoogle Scholar
  136. [136]
    Zimmerman M., McGlinchey J.B., Posternak M.A., Friedman M., Attiullah N., Boerescu D., How should remission from depression be defined? The depressed patient’s perspective, Am. J. Psychiatry, 2006, 163, 148–150PubMedGoogle Scholar
  137. [137]
    McKnight P.E., Kashdan T.B., The importance of functional impairment to mental health outcomes: a case for reassessing our goals in depression treatment research, Clin. Psychol. Rev., 2009, 29, 243–259PubMedCentralPubMedGoogle Scholar
  138. [138]
    Henrich J., Boyd R., Bowles S., Camerer C., Fehr E., Gintis H., et al., “Economic man” in cross-cultural perspective: behavioral experiments in 15 small-scale societies, Behav. Brain Sci., 2005, 28, 795–815PubMedGoogle Scholar
  139. [139]
    Henrich J., Boyd R., McElreath R., Gurven M., Richerson P.J., Ensminger J., et al., Culture does account for variation in game behavior, Proc. Natl. Acad. Sci. USA, 2012, 109, E32–33, author reply E34PubMedGoogle Scholar
  140. [140]
    Henrich J., McElreath R., Barr A., Ensminger J., Barrett C., Bolyanatz A., et al., Costly punishment across human societies, Science, 2006, 312, 1767–1770PubMedGoogle Scholar
  141. [141]
    Kishida K.T., King-Casas B., Montague P.R., Neuroeconomic approaches to mental disorders, Neuron, 2010, 67, 543–554PubMedCentralPubMedGoogle Scholar
  142. [142]
    Gelcich S., Guzman R., Rodríguez-Sickert C., Castilla J.C., Cárdenas J.C., Exploring external validity of common pool resource experiments: insights from artisanal benthic fisheries in Chile, Ecol. Soc., 2013, 18, 2Google Scholar
  143. [143]
    Knoch D., Schneider F., Schunk D., Hohmann M., Fehr E., Disrupting the prefrontal cortex diminishes the human ability to build a good reputation, Proc. Natl. Acad. Sci. USA, 2009, 106, 20895–20899PubMedGoogle Scholar
  144. [144]
    Ruff C.C., Ugazio G., Fehr E., Changing social norm compliance with noninvasive brain stimulation, Science, 2013, 342, 482–484PubMedGoogle Scholar
  145. [145]
    Kennedy D.P., Adolphs R., The social brain in psychiatric and neurological disorders, Trends Cogn. Sci., 2012, 16, 559–572PubMedCentralPubMedGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Pablo Billeke
    • 1
  • Samantha Boardman
    • 2
  • P. Murali Doraiswamy
    • 3
  1. 1.Centro de Investigación en Complejidad Social (CICS), Facultad de GobiernoUniversidad del DesarrolloSantiagoChile
  2. 2.Department of PsychiatryWeill Cornell Medical CollegeNew YorkUSA
  3. 3.Department of Psychiatry and Duke Institute for Brain SciencesDuke University Medical CenterDurhamUSA

Personalised recommendations