Skip to main content
Log in

Untangling the role of tau in Alzheimer’s disease: A unifying hypothesis

  • Review Article
  • Published:
Translational Neuroscience

Abstract

Recent investigations into the etiology and pathogenesis of Alzheimer’s disease (AD) in the past few years have expanded to include previously unexplored and/or disconnected aspects of AD and related conditions at both the cellular and systemic levels of organization. These include how AD-associated abnormalities affect the cell cycle and neuronal differentiation state and how they recruit signal transduction, membrane trafficking and protein transcytosis mechanisms to produce a neurotoxic syndrome capable of spreading itself throughout the brain. The recent expansion of AD research into intercellular and new aspects of cellular degenerative mechanisms is causing a systemic re-evaluation of AD pathogenesis, including the roles played by well-studied elements, such as the generation of Aβ and tau protein aggregates. It is also changing our view of neurodegenerative diseases as a whole. Here we propose a conceptual framework to account for some of the emerging aspects of the role of tau in AD pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

FAD:

familial Alzheimer’s disease

LOAD:

late-onset Alzheimer’s disease

APP:

amyloid precursor protein

NFT:

neurofibrillary tangle

PHF:

paired helical filaments

Aβ:

beta-amyloid peptide

CTE:

chronic traumatic encephalopathy

CNS:

central nervous system

CSF:

cerebrospinal fluid

ROS:

reactive oxygen species

MT:

microtubule

ECF:

extracellular fluid

MTBR:

microtubule binding repeat

MAP:

microtubule associated protein

References

  1. Alzheimer A., Über eine eigenartige Erkrankung der Hirnrinde, Allg. Z. Psychiatr., 1907, 64, 146–148

    Google Scholar 

  2. Lowenberg K., Waggoner R., Familial organic psychosis (Alzheimer’s type), Arch. Neurol., 1934, 31, 737–754

    Article  Google Scholar 

  3. Blessed G., Tomlinson B.E., Roth M., The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects, Br. J. Psychiatry, 1968, 114, 797–811

    Article  PubMed  CAS  Google Scholar 

  4. Olson M.I., Shaw C.M., Presenile dementia and Alzheimer’s disease in mongolism, Brain, 1969, 92, 147–156

    Article  PubMed  CAS  Google Scholar 

  5. Cook R., Ward B., Austin J., Studies in aging of the brain: IV. Familial Alzheimer’s disease: relationship to transmissible dementia, aneuploidy and microtubular defects, Neurology, 1979, 29, 1402–1412

    CAS  Google Scholar 

  6. Buckton K.E., Whalley L.J., Lee M., Christie J.E., Chromosome changes in Alzheimer’s presenile dementia, J. Med. Genet., 1983, 20, 46–51

    Article  PubMed  CAS  Google Scholar 

  7. Bird T.D., Sumi S.M., Nemens E.J., Nochlin D., Schellenberg G., Lampe T.H., et al., Phenotypic heterogeneity in familial Alzheimer’s disease: a study of 24 kindreds, Ann. Neurol., 1989, 25, 12–25

    Article  PubMed  CAS  Google Scholar 

  8. Gambetti P., Autilio-Gambetti L., Perry G., Shecket G., Crane R.C., Antibodies to neurofibrillary tangles of Alzheimer’s disease raised from human and animal neurofilament fractions, Lab. Invest., 1983, 49, 430–435

    PubMed  CAS  Google Scholar 

  9. Hyman B.T., Van Hoesen G.W., Damasio A.R., Barnes C.L., Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation, Science, 1984, 225, 1168–1170

    Article  PubMed  CAS  Google Scholar 

  10. Kidd M., Paired helical filaments in electron microscopy of Alzheimer’s disease, Nature, 1963, 197, 192–193

    Article  PubMed  CAS  Google Scholar 

  11. Whitehouse P.J., Price D.L., Struble R.G., Clark A.W., Coyle J.T., DeLong M.R., Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain, Science, 1982, 215, 1237–1239

    Article  PubMed  CAS  Google Scholar 

  12. Drachman D.A., Leavitt J., Human memory and the cholinergic system: a relationship to aging?, Arch. Neurol., 1974, 30, 113–121

    Article  PubMed  CAS  Google Scholar 

  13. Glenner G.G., Wong C.W., Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein, Biochem. Biophys. Res. Commun., 1984, 122, 1131–1135

    Article  PubMed  CAS  Google Scholar 

  14. Grundke-Iqbal I., Iqbal K., Tung Y.C., Quinlan M., Wisniewski H.M., Binder L.I., Abnormal phosphorylation of the microtubuleassociated protein tau in Alzheimer cytoskeletal pathology, Proc. Natl. Acad. Sci. USA, 1986, 83, 4913–4917

    Article  PubMed  CAS  Google Scholar 

  15. Kosik K.S., Joachim C.L., Selkoe D.J., Microtubule associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease, Proc. Natl. Acad. Sci. USA 83, 1986, 4044–4048

    Article  PubMed  CAS  Google Scholar 

  16. Bancher C., Brunner C., Lassman H., Budka H., Jellinger K., Wiche G., et al., Accumulation of abnormally phosphorylated tau precedes the formation of neurofibrillary tangles in Alzheimer’s disease, Brain Res., 1989, 477, 90–99

    Article  PubMed  CAS  Google Scholar 

  17. McKee A.C., Kowall N.W., Kosik K.S., Microtubular reorganization and dendritic growth response in Alzheimer’s disease, Ann. Neurol., 1989, 26, 652–659

    Article  PubMed  CAS  Google Scholar 

  18. Braak H., Braak E., Neuropathological staging of Alzheimer-related changes, Acta Neuropathol., 1991, 82, 239–259

    Article  PubMed  CAS  Google Scholar 

  19. Yamaguchi H., Nakazato Y., Shoji M., Ihara Y., Hirai S., Ultrastructure of the neuropil threads in the Alzheimer brain: their dendritic origin and accumulation in the senile plaques, Acta Neuropathol., 1990, 80, 368–374

    Article  PubMed  CAS  Google Scholar 

  20. St. George-Hyslop P.H., Tanzi R.E., Polinsky R.J., Haines J.L., Nee L., Watkins P.C., et al. The genetic defect causing familial Alzheimer’s disease maps on chromosome 21, Science, 1987, 235, 885–890

    Article  PubMed  CAS  Google Scholar 

  21. Chartier-Harlin M.C., Crawford F., Houlden H., Warren A., Hughes D., Fidani L., et al., Early-onset Alzheimer’s disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene, Nature, 1991, 353, 844–846

    Article  PubMed  CAS  Google Scholar 

  22. Goate A., Chartier-Hardin M.C., Mullan M., Brown J., Crawford F., Fidani L., et al., Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s Disease, Nature, 1991, 349, 704–706

    Article  PubMed  CAS  Google Scholar 

  23. Murrel J. M., Farlow B., Ghetti B., Benson M.D., A mutation in the amyloid precursor protein associated with hereditary Alzheimer’s disease, Science, 1991, 254, 97–99

    Article  Google Scholar 

  24. Selkoe D.J., The molecular pathology of Alzheimer’s disease, Neuron, 1991, 6, 487–498

    Article  PubMed  CAS  Google Scholar 

  25. Hardy J.A., Higgins G.A., Alzheimer’s disease: the amyloid cascade hypothesis, Science, 1992, 256, 184–185

    Article  PubMed  CAS  Google Scholar 

  26. Wallace W.C., Bragin V., Robakis N.K., Sambamurti K., VanderPutten D., Merril C.R., et al., Increased biosynthesis of Alzheimer amyloid precursor protein the in cerebral cortex of rats with lesions of the nucleus basalis of Meynert, Mol. Brain Res., 1991, 10, 173–178

    Article  PubMed  CAS  Google Scholar 

  27. Strittmatter W.J., Saunders A.M., Schmechel D., Pericak-Vance M., Enghild J., Salvesen G.S., et al., Apolipoprotein E: high-avidity binding to betaamyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease, Proc. Natl. Acad. Sci. USA, 1993, 90, 1977–1981

    Article  PubMed  CAS  Google Scholar 

  28. Wisniewski T., Frangione B., Apolipoprotein E: a pathological chaperone protein in patients with cerebral and systemic amyloid, Neurosci. Lett., 1992, 135:235–238

    Article  PubMed  CAS  Google Scholar 

  29. Gentleman S.M., Nash M.J., Sweeting C.J., Graham D.I., Roberts G.W., β-Amyloid precursor protein (βAPP) as a marker for axonal injury after head injury, Neurosci. Lett., 1993, 160, 139–144

    Article  PubMed  CAS  Google Scholar 

  30. McKenzie J.E., Gentleman S.M., Roberts G.W., Graham D.I., Royston M.C., Increased numbers of βAPP-immunoreactive neurones in the entorhinal cortex after head injury, Neuroreport, 1994, 6, 161–164

    Article  PubMed  CAS  Google Scholar 

  31. Yankner B.A., Dawes L.R., Fisher S., Villa-Komaroff L., Oster-Granite M.L., Neve R.L., Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease, Science, 1989, 245, 417–420

    Article  PubMed  CAS  Google Scholar 

  32. Busciglio J., Lorenzo A., Yeh J., Yankner B.A., Amyloid fibrils induce tau phosphorylation and loss of microtubule binding, Neuron, 1995, 14, 879–888

    Article  PubMed  CAS  Google Scholar 

  33. Games D., Adams D., Alessandrini R., Barbour R., Berthelette P., Blackwell C., et al., Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein, Nature, 1995, 373, 523–527

    Article  PubMed  CAS  Google Scholar 

  34. Wolfe M.S., Xia W., Ostaszewski B.L., Diehl T.S., Kimberly W.T., Selkoe D.J., Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity, Nature, 1999, 398, 513–517

    Article  PubMed  CAS  Google Scholar 

  35. Kowall N.W., Kosik K.S., Axonal disruption and aberrant localization of tau protein characterize the neuropil pathology of Alzheimer’s disease, Ann. Neurol., 1987, 22, 639–643

    Article  PubMed  CAS  Google Scholar 

  36. Weingarten M.D., Lockwood A.H., Hwo S.Y., Kirschner M.W., A protein factor essential for microtubule assembly, Proc. Natl. Acad. Sci. USA, 1975, 72, 1858–1862

    Article  PubMed  CAS  Google Scholar 

  37. Cleveland D.W., Hwo S.Y., Kirschner M.W., Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly, J. Mol. Biol., 1977, 116, 227–247

    Article  PubMed  CAS  Google Scholar 

  38. Greenberg S.G., Davies P., A preparation of Alzheimer paired helical filaments that displays distinct tau proteins by polyacrylamide gel electrophoresis, Proc. Natl. Acad. Sci. USA, 1990, 87, 5827–5831

    Article  PubMed  CAS  Google Scholar 

  39. Binder L.I., Frankfurter A., Rebhun L.I., The distribution of tau polypeptides in the mammalian central nervous system, J. Cell Biol., 1985, 101, 1371–1378

    Article  PubMed  CAS  Google Scholar 

  40. Lindwall G., Cole R.D., Phosphorylation affects the ability of tau protein to promote microtubule assembly, J. Biol. Chem., 1984, 259, 5301–5305

    PubMed  CAS  Google Scholar 

  41. Lee G., Cowan N., Kirschner M. The primary structure and heterogeneity of tau protein from mouse brain, Science, 1998, 239, 285–288

    Article  Google Scholar 

  42. Goedert M., Wischik C.M., Crowther R.A., Walker J.E., Klug A., Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau, Proc. Natl. Acad. Sci. USA, 85, 1998, 4051–4055

    Article  Google Scholar 

  43. Ksiezak-Reding H., Yen S.H., Structural stability of paired helical filaments requires microtubule-binding domains of tau: a model for self-association, Neuron, 1991, 6, 717–728

    Article  PubMed  CAS  Google Scholar 

  44. Novak M., Jakes R., Edwards P.C., Milstein C., Wischik C.M., Difference between the tau protein of Alzheimer paired helical filament core and normal tau revealed by epitope analysis of monoclonal antibodies 423 and 7.51, Proc. Natl. Acad. Sci. USA, 1991, 88, 5837–5841

    Article  PubMed  CAS  Google Scholar 

  45. Crowther R.A., Olesen O.F., Jakes R., Goedert M., The microtubule binding repeats of tau protein assemble into filaments like those found in Alzheimer’s disease, FEBS Lett., 1992, 309, 199–202

    Article  PubMed  CAS  Google Scholar 

  46. Arriagada P.A., Growdon J.H., Hedley-White E.T., Hyman B.T., Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s Disease, Neurology, 1992, 42, 631–639

    Article  PubMed  CAS  Google Scholar 

  47. Armstrong R.A., Myers D., Smith C.U.M., The spatial patterns of plaques and tangles in Alzheimer’s disease do not support the ‘cascade hypothesis’, Dementia, 1993, 4, 16–20

    PubMed  CAS  Google Scholar 

  48. Baum L., Seger R., Woodgett J.R., Kawabata S., Maruyama K., Koyama M., Silver J., Saitoh T., Overexpressed tau protein in cultured cells is phosphorylated without formation of PHF: implication of phosphoprotein phosphatase involvement, Mol. Brain Res., 1995, 34, 1–17

    Article  PubMed  CAS  Google Scholar 

  49. Levy-Lahad E., Wasco W., Poorkaj P., Romano D.M., Oshima J., Pettingell W.H., et al., Candidate gene for the chromosome 1 familial Alzheimer’s disease locus, Science, 1995, 269, 973–977

    Article  PubMed  CAS  Google Scholar 

  50. Sherrington R., Rogaev E.I., Liang Y., et al., Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease, Nature, 1995, 375, 754–760

    Article  PubMed  CAS  Google Scholar 

  51. Spillantini M.G., Murrell J.R., Goedert M., Farlow M.R., Klug A., Ghetti B., Mutation in the tau gene in familial multiple system tauopathy with presenile dementia, Proc. Natl. Acad. Sci. USA, 1998, 95, 7737–7741

    Article  PubMed  CAS  Google Scholar 

  52. Hall G.F., Yao J., Lee G., Tau overexpressed in identified lamprey neurons in situ is spatially segregated by phosphorylation state, forms hyperphosphorylated, dense aggregations and induces neurodegeneration, Proc. Natl. Acad. Sci. USA, 1997, 94, 4733–4738

    Article  PubMed  CAS  Google Scholar 

  53. Ishihara T., Hong M., Zhang B., Nakagawa Y., Lee M.K., Trojanowski J.Q., et al., Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform, Neuron, 1999, 24, 751–762

    Article  PubMed  CAS  Google Scholar 

  54. Spittaels K., Van den Haute C., Van Dorpe J., Bruynseels K., Vandezande K., Laenen I., et al., Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein, Am. J. Pathol., 1999, 155, 2153–2165

    Article  PubMed  CAS  Google Scholar 

  55. Götz J., Chen F., Barmettler R., Nitsch R.M., Tau filament formation in transgenic mice expressing P301L tau, J. Biol. Chem., 2001, 276, 529–534

    Article  PubMed  Google Scholar 

  56. Lewis J., McGowan E., Rockwood J., Melrose H., Nacharaju P., Van Slegtenhorst M., et al., Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein, Nat. Genet., 2000, 25, 402–405

    Article  PubMed  CAS  Google Scholar 

  57. Buee L., Delacourte A., Comparative biochemistry of tau in progressive supranuclear palsy, corticobasal degeneration, FTDP-17 and Pick’s disease, Brain Pathol., 1999, 9, 681–693

    Article  PubMed  CAS  Google Scholar 

  58. Hasegawa M., Smith M.J., Goedert M., Tau proteins with FTDP-17 mutations have a reduced ability to promote microtubule assembly, FEBS Lett., 1998, 437, 207–210

    Article  PubMed  CAS  Google Scholar 

  59. Arawaka S., Usami M., Sahara N., Schellenberg G.D., Lee G., Mori H., The tau mutation (val337met) disrupts cytoskeletal networks of microtubules, Neuroreport, 2000, 10, 993–997

    Article  Google Scholar 

  60. Goedert M., Jakes R., Crowther R.A., Effects of frontotemporal dementia FTDP-17 mutations on heparin-induced assembly of tau filaments, FEBS Lett., 1999, 450, 306–311

    Article  PubMed  CAS  Google Scholar 

  61. Nacharaju P., Lewis J., Easson C., Yen S., Hackett J., Hutton M., et al., Accelerated filament formation from tau protein with specific FTDP-17 missense mutations, FEBS Lett., 1999, 447, 195–199

    Article  PubMed  CAS  Google Scholar 

  62. Goedert M., Satumtira S., Jakes R., Smith M.J., Kamibayashi C., White C.L.3rd, et al., Reduced binding of protein phosphatase 2A to tau protein with frontotemporal dementia and parkinsonism linked to chromosome 17 mutations, J. Neurochem., 2000, 75, 2155–2162

    Article  PubMed  CAS  Google Scholar 

  63. Alonso A.D., Grundke-Iqbal I., Barra H.S., Iqbal K., Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: sequestration of microtubuleassociated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau, Proc. Natl. Acad. Sci. USA, 94, 1997, 298–303

    Article  PubMed  CAS  Google Scholar 

  64. Alonso A.C., Zaidi T., Novak M., Grundke-Iqbal I., Iqbal K., Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments and straight filaments, Proc. Natl. Acad. Sci. USA, 2001, 98, 6923–6928

    Article  PubMed  CAS  Google Scholar 

  65. Lee V.M., Goedert M., Trojanowski J.Q., Neurodegenerative tauopathies, Annu. Rev. Neurosci., 2001, 24, 1121–1159

    Article  PubMed  CAS  Google Scholar 

  66. Binder L.I., Guillozet-Bongaarts A.L., Garcia-Sierra F., Berry R.W., Tau, tangles, and Alzheimer’s disease, Biochim. Biophys. Acta, 2005, 1739, 216–223

    Article  PubMed  CAS  Google Scholar 

  67. Iqbal K.C., Alonso A., Chen S., Chohan M.O., El-Akkad E., Gong C.X., et al., Tau pathology in Alzheimer disease and other tauopathies, Biochim. Biophys. Acta, 2005, 1739, 198–210

    Article  PubMed  CAS  Google Scholar 

  68. Avila J., Tau phosphorylation and aggregation in Alzheimer’s disease pathology, FEBS Lett., 2006, 580, 2922–2927

    Article  PubMed  CAS  Google Scholar 

  69. Stoothoff W., Johnson G.V., Tau phosphorylation: physiological and pathological consequences, Biochim. Biophys. Acta, 2005, 1739, 280–297

    Article  PubMed  CAS  Google Scholar 

  70. Delacourte A., Sergeant N., Wattez A., Gauvreau D., Robitaille Y., Vulnerable neuronal subsets in Alzheimer’s and Pick’s disease are distinguished by their tau isoform distribution and phosphorylation, Ann. Neurol., 1998, 43, 193–204

    Article  PubMed  CAS  Google Scholar 

  71. Sergeant N., Wattez A., Delacourte A., Neurofibrillary degeneration in progressive supranuclear palsy and corticobasal degeneration: tau pathologies with exclusive “exon 10” isoforms, J. Neurochem., 1999, 72, 1243–1249

    Article  PubMed  CAS  Google Scholar 

  72. Hutton M., Lewis J., Dickson D., Yen S.H., McGowan E., Analysis of tauopathies with transgenic mice, Trends Mol. Med., 2001, 7, 467–470

    Article  PubMed  CAS  Google Scholar 

  73. Jakes R., Novak M., Davison M., Wischik C.M., Identification of 3- and 4-repeat tau isoforms within the PHF in Alzheimer’s disease, EMBO J., 1991, 10, 2725–2729

    PubMed  CAS  Google Scholar 

  74. Crowther R.A., Olesen O.F., Smith M.J., Jakes R., Goedert M., Assembly of Alzheimer-like filaments from full-length tau protein, FEBS Lett., 1994, 337, 135–138

    Article  PubMed  CAS  Google Scholar 

  75. Brandt R., Leger J., Lee G., Interaction of tau with the neural plasma membrane mediated by tau’s amino-terminal projection domain, J. Cell Biol., 1995, 131, 1327–1340

    Article  PubMed  CAS  Google Scholar 

  76. Lee G., Newman S.T., Gard D.L., Band H., Panchamoorthy G., Tau interacts with src-family non-receptor tyrosine kinases, J. Cell Sci., 1998, 111, 3167–3177

    PubMed  CAS  Google Scholar 

  77. Lambert M.P., Barlow A.K., Chromy B.A., Edwards C., Freed R., Liosatos M., et al., Diffusible, nonfibrillar ligands derived from Abeta1–42 are potent central nervous system neurotoxins, Proc. Natl. Acad. Sci. USA, 1998, 95, 6448–6453

    Article  PubMed  CAS  Google Scholar 

  78. Lee G., Thangavel R., Sharma V.M., Litersky J.M., Bhaskar K., Fang S.M., et al., Phosphorylation of tau by fyn: implications for Alzheimer’s disease, J. Neurosci., 2004, 24, 2304–2312

    Article  PubMed  CAS  Google Scholar 

  79. Ho G.J., Hashimoto M., Adame A., Izu M., Alford M.F., Thal L.J., et al., Altered p59Fyn kinase expression accompanies disease progression in Alzheimer’s disease: implications for its functional role, Neurobiol. Aging, 2005, 26, 625–635

    Article  PubMed  CAS  Google Scholar 

  80. Arendt T., Holzer M., Grossmann A., Zedlick D., Bruckner M.K., Increased expression and subcellular translocation of the mitogen activated protein kinase kinase and mitogen-activated protein kinase in Alzheimer’s disease, Neuroscience, 1995, 68, 5–18

    Article  PubMed  CAS  Google Scholar 

  81. Vincent I., Jicha G., Rosado M., Dickson D.W., Aberrant expression of mitotic cdc2/cyclin B1 kinase in degenerating neurons of Alzheimer’s disease brain, J. Neurosci., 1997, 17, 3588–3598

    PubMed  CAS  Google Scholar 

  82. Vincent I., Zheng J., Dickson D.W., Kress Y., Davies P., Mitotic phosphoepitopes precede paired helical filaments in Alzheimer’s disease, Neurobiol. Aging, 1998, 19, 287–296

    Article  PubMed  CAS  Google Scholar 

  83. Yang Y., Mufson E.J., Herrup K., Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer’s disease, J. Neurosci., 2003, 23, 2557–2563

    PubMed  CAS  Google Scholar 

  84. Nixon, R.A., Cataldo A.M., Paskevitch P. A., Hamilton D.J., Wheelock T.R., Kanaley-Andrews L., The lysosomal system in neurons: involvement at multiple stages in Alzheimer’s disease pathogenesis, Ann. NY Acad. Sci., 1992, 674, 65–88

    Article  PubMed  CAS  Google Scholar 

  85. Cataldo A.M., Barnett J.L., Berman S.A., Li J., Quarless S., Bursztajn S., et al., Gene expression and cellular content of cathepsin D in Alzheimer’s disease brain: evidence for early up-regulation of the endosomal-lysosomal system, Neuron, 1995, 14, 671–680

    Article  PubMed  CAS  Google Scholar 

  86. Yasojima K., Kuret J., DeMaggio A.J., McGeer E., McGeer P.L., Casein kinase 1 delta mRNA is upregulated in Alzheimer disease brain, Brain Res., 2000, 865, 116–120

    Article  PubMed  CAS  Google Scholar 

  87. Baumann K., Mandelkowa E.M., Biernata J., Piwnica-Wormsb H., Mandelkow E., Abnormal Alzheimer-like phosphorylation of tau-protein by cyclin dependent kinases Cdk2 and Cdk5, FEBS Lett., 1993, 336, 417–424

    Article  PubMed  CAS  Google Scholar 

  88. Drewes G., Ebneth A., Preuss U., Mandelkow E.M., Mandelkow E., MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption, Cell, 1997, 89, 297–308

    Article  PubMed  CAS  Google Scholar 

  89. Yoshida H., Watanabe A., Ihara Y., Collapsin response mediator protein-2 is associated with neurofibrillary tangles in Alzheimer’s disease, J. Biol. Chem., 1998, 273, 9761–9768

    Article  PubMed  CAS  Google Scholar 

  90. de la Monte S.M., Ng S.C., Hsu D.W., Aberrant GAP-43 gene expression in Alzheimer’s disease, Am. J. Pathol., 1995, 147, 934–946

    PubMed  Google Scholar 

  91. Caceres A., Kosik K.S., Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons, Nature, 1990, 343, 461–463

    Article  PubMed  CAS  Google Scholar 

  92. Mandell J., Banker G.A., A spatial gradient of tau protein phosphorylation in nascent axons, J. Neurosci., 1996, 16, 5727–5740

    PubMed  CAS  Google Scholar 

  93. Biernat J., Mandelkow E.M., The development of cell processes induced by tau protein requires phosphorylation of Serine 262 and 356 in the repeat domain and is inhibited by phosphorylation in the proline-rich domains, Mol. Biol. Cell, 1999, 10, 727–740

    PubMed  CAS  Google Scholar 

  94. Biernat J., Wu Y.Z., Timm T., Zheng-Fischöfer Q., Mandelkow E., Meijer L., et al., Protein kinase MARK/PAR-1 is required for neurite outgrowth and establishment of neuronal polarity, Mol. Biol. Cell, 2002, 13, 4013–4028

    Article  PubMed  CAS  Google Scholar 

  95. Belkadi A., LoPresti P., Truncated tau with the Fyn-binding domain and without the microtubule-binding domain hinders the myelinating capacity of an oligodendrocyte cell line, J. Neurochem., 2008, 107, 351–360

    Article  PubMed  CAS  Google Scholar 

  96. Takei Y., Teng J., Harada A., Hirokawa N., Defects in axonal elongation and neuronal migration in mice with disrupted tau and map1b genes, J. Cell Biol., 2000, 150, 989–1000

    Article  PubMed  CAS  Google Scholar 

  97. Corsellis J.A., Brierley J.B., Observations on the pathology of insidious dementia following head injury, J. Ment. Sci., 1959, 105, 714–720

    PubMed  CAS  Google Scholar 

  98. Corsellis J.A., Bruton C.J., Freeman-Browne D., The aftermath of boxing, Psychol. Med., 1973, 3, 270–303

    Article  PubMed  CAS  Google Scholar 

  99. McKee A.C., Cantu R.C., Nowinski C.J., Hedley-Whyte E.T., Gavett B.E., Budson A.E., et al., Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury, J. Neuropathol. Exp. Neurol., 2009, 68, 709–735

    Article  PubMed  Google Scholar 

  100. Rapoport M., Dawson H.N., Binder L.I., Vitek M.P., Ferreira A., Tau is essential to beta-amyloid-induced neurotoxicity, Proc. Natl. Acad. Sci. USA, 2002, 99, 6364–6369

    Article  PubMed  CAS  Google Scholar 

  101. King M.E., Kan H., Baas P.W., Erisir A., Glabe C., Bloom G.S., Taudependent microtubule disassembly initiated by prefibrillar betaamyloid, J. Cell Biol., 2006, 175, 541–546

    Article  PubMed  CAS  Google Scholar 

  102. Götz J., Probst A., Spillatini M.G., Schäfer T., Jakes R., Bürki K., et al., Somatodendritic localization and hyperphosphorylation of tau protein in transgenic mice expressing the longest human brain tau isoform, EMBO J., 1995, 14, 1304–1313

    PubMed  Google Scholar 

  103. Brion J.P., Tremp G., Octave J.N., Transgenic expression of the shortest human tau affects its compartmentalization and its phosphorylation as in the pretangle stage of Alzheimer’s disease, Am. J. Pathol., 1999, 54, 255–270

    Article  Google Scholar 

  104. Hong M., Zhukareva V., Vogelsberg-Ragaglia V., Wszolek Z., Reed L., Miller B.I., et al., Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17, Science, 1998, 282, 1914–1917

    Article  PubMed  CAS  Google Scholar 

  105. DeTure M., Ko L.W., Yen S., Nacharaju P., Easson C., Lewis J., et al., Missense tau mutations identified in FTDP-17 have a small effect on tau-microtubule interactions, Brain Res., 2000, 853, 5–14

    Article  PubMed  CAS  Google Scholar 

  106. Harada A., Oguchi K., Okabe S., Kuno J., Terada S., Ohshima T., et al., Altered microtubule organization in small-calibre axons of mice lacking tau protein, Nature, 1994, 369, 488–491

    Article  PubMed  CAS  Google Scholar 

  107. Tint I., Slaughter T., Fischer I., Black M.M., Acute inactivation of tau has no effect on dynamics of microtubules in growing axons of cultured sympathetic neurons, J. Neurosci., 1998, 18, 8660–8673

    PubMed  CAS  Google Scholar 

  108. Amadoro G., Serafino A.L., Barbato C., Ciotti M.T., Sacco A., Calissano P., et al., Role of N-terminal tau domain integrity on the survival of cerebellar granule neurons, Cell. Death Differ., 2004, 11, 217–230

    Article  PubMed  CAS  Google Scholar 

  109. Amadoro G., Ciotti M.T., Costanzi M., Cestari V., Calissano P., Canu N., NMDA receptor mediates tau-induced neurotoxicity by calpain and ERK/MAPK activation, Proc. Natl. Acad. Sci. USA, 2006, 103, 2892–2897

    Article  PubMed  CAS  Google Scholar 

  110. Corsetti V., Amadoro G., Gentile A., Capsoni S., Ciotti M.T., Cencioni M.T., et al., Identification of a caspase-derived N-terminal tau fragment in cellular and animal Alzheimer’s disease models, Mol. Cell. Neurosci., 2008, 38, 381–392

    Article  PubMed  CAS  Google Scholar 

  111. Horowitz P.M., LaPointe N., Guillozet-Bongaarts A.L., Berry R.W., Binder L.I., N-terminal fragments of tau inhibit full-length tau polymerization in vitro, Biochemistry, 2006, 45, 12859–12866

    Article  PubMed  CAS  Google Scholar 

  112. Gamblin T.C., Berry R.W., Binder L.I., Tau polymerization: role of the amino terminus, Biochemistry, 2003, 42, 2252–2257

    Article  PubMed  CAS  Google Scholar 

  113. Yin H., Kuret J., C-terminal truncation modulates both nucleation and extension phases of tau fibrillization, FEBS Lett., 2006, 580, 211–215

    Article  PubMed  CAS  Google Scholar 

  114. Zilka N., Filipcik P., Koson P., Fialova L., Skrabana R., Zilkova M., et al., Truncated tau from sporadic Alzheimer’s disease suffices to drive neurofibrillary degeneration in vivo, FEBS Lett., 2006, 580, 3582–3588

    Article  PubMed  CAS  Google Scholar 

  115. Abraha A., Ghoshal N., Gamblin T. C., Cryns V., Berry R.W., Kuret J., et al., C-terminal inhibition of tau assembly in vitro and in Alzheimer’s disease, J. Cell Sci., 2000, 113, 3737–3745

    PubMed  CAS  Google Scholar 

  116. Wang Y.P., Biernat J., Pickhardt M., Mandelkow E., Mandelkow E.M., Stepwise proteolysis liberates tau fragments that nucleate the Alzheimer-like aggregation of full-length tau in a neuronal cell model, Proc. Natl. Acad. Sci. USA, 2007, 104, 10252–10257

    Article  PubMed  CAS  Google Scholar 

  117. Guillozet-Bongaarts A.L., Garcia-Sierra F., Reynolds M.R., Horowitz P.M., Fu Y., Wang T., et al., Tau truncation during neurofibrillary tangle evolution in Alzheimer’s disease, Neurobiol. Aging, 2005, 26, 1015–22

    Article  PubMed  CAS  Google Scholar 

  118. Roberson E.D., Scearce-Levie K., Palop J.J., Yan F., Cheng I.H., Wu T., et al., Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model, Science, 2007, 316, 750–754

    Article  PubMed  CAS  Google Scholar 

  119. Folwell J., Cowan C.M., Ubhi K.K., Shiabh H., Newman T.A., Shepherd D., et al., Aβ exacerbates the neuronal dysfunction caused by human tau expression in a Drosophila model of Alzheimer’s disease, Exp. Neurol., 2009, 223, 401–409

    Article  PubMed  CAS  Google Scholar 

  120. Mudher A., Lovestone S., Alzheimer’s disease-do tauists and baptists finally shake hands?, Trends Neurosci., 2002, 25, 22–26

    Article  PubMed  CAS  Google Scholar 

  121. He H.J., Wang X.S., Pan R., Wang D.L., Liu M.N., He R.Q., The proline rich domain of tau plays a role in interactions with actin, BMC Cell Biol., 2009, 10, 81–93

    Article  PubMed  CAS  Google Scholar 

  122. Perez M., Valpuesta J.M., Medina M., Montejo de Garcini E., J. Avila, Polymerization of tau into filaments in the presence of heparin: the minimal sequence required for tau-tau interaction, J. Neurochem., 1996, 67, 1183–1190

    Article  PubMed  CAS  Google Scholar 

  123. Magnani E., Fan J., Gasparini L., Golding M., Williams M., Schiavo G., et al., Interaction of tau protein with the dynactin complex, EMBO J., 2007, 26, 4546–4554

    Article  PubMed  CAS  Google Scholar 

  124. Fulga T.A., Elson-Schwab I., Khurana V., Steinhilb M.L., Spires T.L., Hyman B.T., et al., Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo, Nat. Cell Biol., 2007, 9, 139–148

    Article  PubMed  CAS  Google Scholar 

  125. Blard O., Feuillette S., Bou J., Chaumette B., Frebourg T., Campion D., et al., Cytoskeleton proteins are modulators of mutant tau-induced neurodegeneration in Drosophila, Hum. Mol. Genet., 2007, 16, 555–566

    Article  PubMed  CAS  Google Scholar 

  126. Lee G., Tau and src family tyrosine kinases, Biochim. Biophys. Acta, 2005, 1739, 323–330

    Article  PubMed  CAS  Google Scholar 

  127. Lu P.J., Wulf G., Zhou X.Z., Davies P., Lu K.P., The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein, Nature, 1999, 399, 784–788

    Article  PubMed  CAS  Google Scholar 

  128. Dickey C.A., Yue M., Lin W.L., Dickson D.W., Dunmore J.H., Lee W.C., et al., Deletion of the ubiquitin ligase CHIP leads to the accumulation, but not the aggregation, of both endogenous phospho- and caspase-3-cleaved tau species, J. Neurosci., 2006, 26, 6985–6996

    Article  PubMed  CAS  Google Scholar 

  129. Sarkar M., Kuret J., Lee G., Two motifs within the tau microtubule binding domain mediate its association with the hsc70 molecular chaperone, J. Neurosci. Res., 2008, 86, 2763–2773

    Article  PubMed  CAS  Google Scholar 

  130. Makrides V., Shen T.E., Bhatia R., Smith B.L., Thimm, J., Lal, R., et al., Microtubule-dependent oligomerization of tau, Implications for physiological tau function and tauopathies, J. Biol. Chem., 2003, 278, 33298–33304

    Article  PubMed  CAS  Google Scholar 

  131. Wang J.Z., Grundke-Iqbal I., Iqbal K., Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration, Eur. J. Neurosci., 2007, 25, 59–68

    Article  PubMed  Google Scholar 

  132. Samsonov A., Yu J.Z., Rasenick M., Popov S.V., Tau interaction with microtubules in vivo, J. Cell Sci., 2004, 117,25, 6129–6141

    Article  PubMed  CAS  Google Scholar 

  133. Mocanu M.M., Nissen A., Eckermann K., Khlistunova I., Biernat J., Drexler D., et al., The potential for beta-structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous Tau in inducible mouse models of tauopathy, J. Neurosci., 2008, 28, 737–748

    Article  PubMed  CAS  Google Scholar 

  134. Nixon, R.A., Endosome function and dysfunction in Alzheimer’s disease and other neurodegenerative diseases, Neurobiol. Aging, 2005, 26, 373–382

    Article  PubMed  CAS  Google Scholar 

  135. Nixon R.A., Wegiel J., Kumar A., Yu W.H., Peterhoff C., Cataldo A., et al., Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study, J. Neuropathol. Exp. Neurol., 2005, 64, 120–122

    Google Scholar 

  136. Boland B.A., Kumar A., Lee F.M., Platt J., Wegiel J., Yu W.H., et al., Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease, J. Neurosci., 2008, 28, 6926–6937

    Article  PubMed  CAS  Google Scholar 

  137. Park S.Y., Ferreira A., The generation of a 17 kDa neurotoxic fragment: an alternative mechanism by which tau mediates beta-amyloidinduced neurodegeneration, J. Neurosci., 2005, 25, 5365–5375

    Article  PubMed  CAS  Google Scholar 

  138. Gomez-Ramos A., Diaz-Hernandez M., Cuadros R., Hernandez F., Avila J., Extracellular tau is toxic to neuronal cells, FEBS Lett., 2006, 580, 4842–4850

    Article  PubMed  CAS  Google Scholar 

  139. Gómez-Ramos A., Díaz-Hernández M., Rubio A., Miras-Portugal M.T., Avila J., Extracellular tau promotes intracellular calcium increase through M1 and M3 muscarinic receptors in neuronal cells, Mol. Cell. Neurosci., 2008, 37, 673–681

    Article  PubMed  CAS  Google Scholar 

  140. Braak E., Braak H., Mandelkow E.M., A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads, Acta Neuropathol., 1994, 87, 554–567

    Article  PubMed  CAS  Google Scholar 

  141. Santacruz K., Lewis J., Spires T., Paulson J., Kotilinek L., Ingelsson M., et al., Tau suppression in a neurodegenerative mouse model improves memory function, Science, 2005, 309, 476–481

    Article  PubMed  CAS  Google Scholar 

  142. Berger Z., Roder H., Hanna A., Carlson A., Rangachari V., Yue M., et al., Accumulation of pathological tau species and memory loss in a conditional model of tauopathy, J. Neurosci., 2007, 27, 3650–3662

    Article  PubMed  CAS  Google Scholar 

  143. Hall G.F., Chu B., Lee G., Yao J., Human tau filaments induce microtubule and synapse loss in vertebrate central neurons, J. Cell Sci., 2000, 120, 1373–1387

    Google Scholar 

  144. Wittmann C.W., Wszolek M.F., Shulman J.M., Salvaterra P.M., Lewis J., Hutton M., et al., Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles, Science, 2001, 293, 5530, 711–714

    Article  PubMed  CAS  Google Scholar 

  145. Lee S., Jung C., Lee G, Hall G.F., Tauopathy mutants P301L, G272V, R406W and V337M accelerate neurodegeneration in the lamprey in situ cellular tauopathy model, J. Alzheimers Dis., 2009, 16, 99–111

    PubMed  CAS  Google Scholar 

  146. Yeh P., Chang C., Phosphorylation alters tau distribution and elongates life span in Drosophila, J. Alzheimers Dis., 2010, 21, 543–556

    PubMed  CAS  Google Scholar 

  147. Chatterjee S., Sang T.K., Lawless G.M., Jackson G.R., Dissociation of tau toxicity and phosphorylation: role of GSK-3beta, MARK and Cdk5 in a Drosophila model, Hum. Mol. Genet., 2009, 18, 164–177

    Article  PubMed  CAS  Google Scholar 

  148. Maeda S., Sahara N., Saito Y., Murayama M., Yoshiike Y., Kim H., et al., Granular tau oligomers as intermediates of tau filaments, Biochemistry, 46, 3856–3861

  149. Maeda S., Sahara N., Saito Y., Murayama S., Ikai A., Takashima A., Increased levels of granular tau oligomers: an early sign of brain aging and Alzheimer’s disease, Neurosci. Res., 2006, 54, 197–201

    Article  PubMed  CAS  Google Scholar 

  150. Sahara N., Maeda S., Takashima A., Tau oligomerization: a role for tau aggregation intermediates linked to neurodegeneration, Curr. Alz. Res., 2008, 5, 591–598

    Article  CAS  Google Scholar 

  151. Bretteville A., Planel E., Tau aggregates: toxic, inert, or protective species?, J. Alzheimers Dis., 2008, 14, 431–436

    PubMed  Google Scholar 

  152. Patterson K.C., Remmer Y., Fu S., Brooker N., Kanaan L., Vana S., et al., Characterization of prefibrillar tau oligomers in vitro and in Alzheimer disease, J. Biol. Chem., 2011, 286, 23063–23076

    Article  PubMed  CAS  Google Scholar 

  153. Iliev A.I., Ganesan S., Bunt G., Wouters F.S., Removal of patternbreaking sequences in microtubule binding repeats produces instantaneous tau aggregation and toxicity, J. Biol. Chem., 2006, 281, 37195–37204

    Article  PubMed  CAS  Google Scholar 

  154. Lasagna-Reeves C.A., Castillo-Carranza D.L., Guerrero-Muoz M.J., Jackson G.R., Kayed R., Preparation and characterization of neurotoxic tau oligomers, Biochemistry, 2010, 49, 10039–10041

    Article  PubMed  CAS  Google Scholar 

  155. Andorfer C., Acker C.M., Kress Y., Hof P.R., Duff K., Davies P., Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms, J. Neurosci., 2005, 225, 5446–5545

    Article  CAS  Google Scholar 

  156. Ambegaokar S., Jackson G., Functional genomic screen and network analysis reveal novel modifiers of tauopathy dissociated from tau phosphorylation, Hum. Mol. Genet., 2011, 20, 4947–4977

    Article  PubMed  CAS  Google Scholar 

  157. Pei J.J., Grundke-Iqbal I., Iqbal K., Bogdanovic N., Winblad B., Cowburn R.F., Accumulation of cyclin-dependent kinase 5 (cdk5) in neurons with early stages of Alzheimer’s disease neurofibrillary degeneration, Brain Res., 1998, 797, 267–277

    Article  PubMed  CAS  Google Scholar 

  158. Stone J.G., Siedlak S.L., Tabaton M., Hirano A., Castellani R.J., Santocanale C., et al., The cell cycle regulator phosphorylated retinoblastoma protein is associated with tau pathology in several tauopathies, J. Neuropathol. Exp. Neurol., 2011, 70, 578–587

    Article  PubMed  CAS  Google Scholar 

  159. Morsch R., Simon W., Coleman P.D., Neurons may live for decades with neurofibrillary tangles, J. Neuropathol. Exp. Neurol., 1999, 58, 188–197

    Article  PubMed  CAS  Google Scholar 

  160. Bobinski M., Wegiel J., Tarnawski M., Bobinski M., Reisberg B., de Leon M.J., et al., Relationships between regional neuronal loss and neurofibrillary changes in the hippocampal formation and duration and severity of Alzheimer disease, J. Neuropathol. Exp. Neurol., 1997, 56, 414–420

    Article  PubMed  CAS  Google Scholar 

  161. Müller W., Eckert A., Kurz C., Eckert G., Leuner K., Mitochondrial dysfunction: common final pathway in brain aging and Alzheimer’s disease — therapeutic aspects, Mol. Neurobiol., 2010, 41, 159–171

    Article  PubMed  CAS  Google Scholar 

  162. Swerdlow R.H., Khan S.M., A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease, Med. Hypotheses, 2004, 63, 8–20

    Article  PubMed  CAS  Google Scholar 

  163. Fang Y., Wu N., Gan X., Yan W., Morrell J. C., Gould, S.J., Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes, PLoS Biol., 2007, 5, e158

    Article  PubMed  CAS  Google Scholar 

  164. Vega I.E., Cui L., Propst J.A., Hutton M.L., Lee G., Yen S.H., Increase in tau tyrosine phosphorylation correlates with the formation of tau aggregates, Mol. Brain Res., 2005, 138, 135–144

    Article  PubMed  CAS  Google Scholar 

  165. Sverdlov M., Shajahan A.N., Minshall R.D., Tyrosine phosphorylationdependence of caveolae-mediated endocytosis, J. Cell. Mol. Med., 2007, 11, 1239–1250

    Article  PubMed  CAS  Google Scholar 

  166. Saman S., Kim W., Raya M., Visnick Y., Miro S., Saman S., et al., Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease, J. Biol. Chem., 2012, 287, 3842–3849

    Article  PubMed  CAS  Google Scholar 

  167. Zehe C., Engling A., Wegehingel S., Schäfer T., Nickel W., Cell-surface heparan sulfate proteoglycans are essential components of the unconventional export machinery of FGF-2, Proc. Natl. Acad. Sci. USA, 2006, 103, 15479–15484

    Article  PubMed  CAS  Google Scholar 

  168. Goedert M., Jakes R., Spillantini M.G., Hasegawa M., Smith M.J., Crowther R.A., Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans, Nature, 1996, 383, 550–553

    Article  PubMed  CAS  Google Scholar 

  169. Gray E.G., Paula-Barbosa M., Roher A., Alzheimer’s disease: paired helical filaments and cytomembranes, Neuropathol. Appl. Neurobiol., 1987, 13, 91–110

    Article  PubMed  CAS  Google Scholar 

  170. Fath T., Eidenmüller J., Brandt R., Tau-mediated cytotoxicity in a pseudohyperphosphorylation model of Alzheimer’s disease, J. Neurosci., 2002, 22, 9733–9741

    PubMed  CAS  Google Scholar 

  171. Barré P., Eliezer D., Folding of the repeat domain of tau upon binding to lipid surfaces, J. Mol. Biol., 2006, 362, 312–326

    Article  PubMed  CAS  Google Scholar 

  172. Wilson D.M., Binder, L.I., Free fatty acids stimulate the polymerization of tau and amyloid beta peptides, Am. J. Pathol., 1997, 161, 2321–2335

    Google Scholar 

  173. Chirita C.N., Necula M., Kuret J., Anionic micelles and vesicles induce tau fibrillization in vitro, J. Biol. Chem., 2003, 278, 25644–25650

    Article  PubMed  CAS  Google Scholar 

  174. Kampers T., Friedhoff P., Biernat J., Mandelkow E.M., RNA stimulates aggregation of microtubule-associated protein-tau into Alzheimerlike paired helical filaments, FEBS Lett., 1997, 399, 344–349

    Article  Google Scholar 

  175. Hall G.F., What is the common link between protein aggregation and interneuronal lesion propagation in neurodegenerative disease?, In: Chang R. (Ed.) Neurodegenerative diseases — processes, prevention, protection and monitoring, InTech, 2011, 1–17

    Google Scholar 

  176. Farah C.A., Perreault S., Liazoghli D., Desjardins M., Anton A., Lauzon M., et al., Tau interacts with Golgi membranes and mediates their association with microtubules, Cell Motil. Cytoskeleton, 2006, 63, 710–724

    Article  PubMed  CAS  Google Scholar 

  177. Liazoghli D., Perreault S., Micheva K.D., Desjardins M., Leclerc N., Fragmentation of the Golgi apparatus induced by overexpression of WT and mutant human tau forms in neurons, Am. J. Pathol., 2005, 166, 1499–1514

    Article  PubMed  CAS  Google Scholar 

  178. Kim W., Lee S., Hall G.F., Secretion of human tau fragments resembling CSF-tau in Alzheimer’s disease is modulated by the presence of the exon 2 insert, FEBS Lett., 2010, 584, 3085–3088

    Article  PubMed  CAS  Google Scholar 

  179. Lee S., Kim W., Li Z., Hall G.F., Accumulation of vesicle-associated human tau in distal dendrites drives degeneration and tau secretion in an in situ cellular tauopathy model, Int. J. Alzheimers Dis., 2012, 172837

    Google Scholar 

  180. Hamano T., Gendron T.F., Causevic E., Yen S.H., Lin W.L., Isidoro C., et al., Autophagic-lysosomal perturbation enhances tau aggregation in transfectants with induced wild-type tau expression, Eur. J. Neurosci., 2008, 27, 1119–11130

    Article  PubMed  Google Scholar 

  181. Abrahamsen H., Stenmark H., Protein secretion: unconventional exit by exophagy, Curr. Biol., 2011, 20, R415–R418

    Article  CAS  Google Scholar 

  182. Funk K., Kuret J., Lysosomal fusion dysfunction as a unifying hypothesis for Alzheimer’s disease pathology, Int. J. Alzheimers Dis., 2012, 752894

  183. Clavaguera F., Bolmont T., Crowther R.A., Abramowski D., Frank S., Probst A., et al., Transmission and spreading of tauopathy in transgenic mouse brain, Nat. Cell Biol., 2009, 11, 909–913

    Article  PubMed  CAS  Google Scholar 

  184. Liu L., Drouet V., Wu J.W., Witter M.P., Small S.A., Clell C., et al., Trans-synaptic spread of tau pathology in vivo, PloS One, 2012, 7, e31302

    Article  PubMed  CAS  Google Scholar 

  185. deCalignon A., Polydoro M., Suárez-Calvet M., William C., Adamowicz D.H., Kopeikina K.J., et al., Propagation of tau pathology in a model of early Alzheimer’s disease, Neuron, 2012, 73, 685–697

    Article  CAS  Google Scholar 

  186. Morrison J.H., Hof P.R. Selective vulnerability of corticocortical and hippocampal circuits in aging and Alzheimer’s disease, Prog. Brain Res., 2002, 136, 467–486

    Article  PubMed  CAS  Google Scholar 

  187. Ko L.W., Rush T., Sahara N., Kersh J.S., Easson C., Deture M., et al., Assembly of filamentous tau aggregates in human neuronal cells, J. Alzheimers Dis., 2004, 6, 605–622

    PubMed  CAS  Google Scholar 

  188. http://www.alzgene.org/

  189. Jensen L.J., Kuhn M., Stark M., Chaffron S., Creevey C. Muller J., et al., STRING 8 — a global view on proteins and their functional interactions in 630 organisms, Nucleic Acids Res., 2009, 37(Database issue), D412–D416

    Google Scholar 

  190. Mathivanan S., Fahner C.J., Reid G.E., Simpson R.J., ExoCarta, 2012, database of exosomal proteins, RNA and lipids, Nucleic Acids Res., 2012, 40(Database issue), D1241–1244

    Article  PubMed  CAS  Google Scholar 

  191. Hall G.F., Lee S., Yao J., Neurofibrillary degeneration can be arrested in an in vivo cellular model of human tauopathy by application of a compound which inhibits tau filament formation in vitro, J. Mol. Neurosci., 2002, 19, 253–260

    Article  PubMed  CAS  Google Scholar 

  192. Kim W., Lee S., Jung C., Ahmed A., Lee G., Hall G.F., Interneuronal transfer of human tau between lamprey central neurons in situ, J. Alzheimers Dis., 2010, 19, 647–664

    PubMed  CAS  Google Scholar 

  193. Le M.N., Kim W., Lee S., McKee A.C., Hall G.F., Multiple mechanisms of extracellular tau spreading in a non-transgenic tauopathy model, Am. J. Neurodegener. Dis., 2012, 1, 316–333

    PubMed  Google Scholar 

  194. Hall G.F., Saman S., Secretion or death? What is the significance of elevated CSF-tau in early AD?, Comm. Integr. Biol., 2012, 5, 1–4

    Article  Google Scholar 

  195. Frost B., Jacks R.L., Diamond M.I., Propagation of tau misfolding from the outside to the inside of a cell, J. Biol. Chem., 2009, 284, 12845–12852

    Article  PubMed  CAS  Google Scholar 

  196. Honson N.S., Jensen J.R., Abraha A., Hall G.F., Kuret J., Small-molecule mediated neuroprotection in an in situ model of tauopathy, Neurotox. Res., 2009, 15, 274–283

    Article  PubMed  CAS  Google Scholar 

  197. Rajendran L., Honsho M., Zahn T.R., Keller P., Geiger K.D., Verkade P., et al., Alzheimer’s disease beta-amyloid peptides are released in association with exosomes, Proc. Natl. Acad. Sci. USA, 2006, 103, 11242–11247

    Article  CAS  Google Scholar 

  198. Emmanouilidou E., Melachroinou K., Roumeliotis T., Garbis S.D., Ntzouni M., Margaritis L.H., et al., Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival, J. Neurosci., 2010, 30, 6838–6851

    Article  PubMed  CAS  Google Scholar 

  199. Fevrier B., Vilette D., Archer F., Loew D., Faigle W., Vidal M., et al., Cells release prions in association with exosomes, Proc. Natl. Acad. Sci. USA, 2004, 101, 9683–9688

    Article  PubMed  CAS  Google Scholar 

  200. Soto C., Estrada L., Protein misfolding and neurodegeneration, Arch. Neurol., 2008, 65, 184–189

    Article  PubMed  Google Scholar 

  201. Aguzzi A., Sigurdson C., Heikenwaelder M., Molecular mechanisms of prion pathogenesis, Annu. Rev. Pathol., 3, 11–40

  202. Novak P., Prcina M., Kontsekova E., Tauons and prions: infamous cousins?, J. Alzheimers Dis., 2011, 26, 413–430

    Article  PubMed  CAS  Google Scholar 

  203. Su J.H., Deng G., Cotman C.W., Transneuronal degeneration in the spread of Alzheimer’s disease pathology: immunohistochemical evidence for the transmission of tau hyperphosphorylation, Neurobiol. Dis., 1997, 4, 365–375

    Article  PubMed  CAS  Google Scholar 

  204. Armstrong R.A., Cairns N.J., Lantos P.L., Clustering of cerebral cortical lesions in patients with corticobasal degeneration, Neurosci. Lett., 1999, 268, 5–8

    Article  PubMed  CAS  Google Scholar 

  205. Armstrong R.A., Cairns N.J., Lantos P.L., Clustering of Pick bodies in Pick’s disease, Neurosci. Lett., 1998, 242, 81–84

    Article  PubMed  CAS  Google Scholar 

  206. Armstrong R.A., Cairns N.J., Lantos P.L., What does the study of spatial patterns tell us about the pathogenesis of neurodegenerative disorders?, Neuropathology, 2001, 21, 1–12

    Article  PubMed  CAS  Google Scholar 

  207. McKee A.C., Stern R.A., Nowinski C., Stein T., Alvarez V.E., Daneshvar D., et al., The spectrum of disease in chronic traumatic encephalopathy, Brain, 2013, 136, 43–64

    PubMed  Google Scholar 

  208. Guo J.L., Lee V.M.Y., Seeding of normal tau by pathological tau conformers drives pathogenesis of Alzheimer-like tangles, J. Biol. Chem., 2011, 286, 15317–15331

    Article  PubMed  CAS  Google Scholar 

  209. Kfoury N., Holmes B.B., Jiang H., Holtzman D.M., Diamond M.I., Transcellular propagation of tau aggregation by fibrillar species, J. Biol. Chem., 2012, 287, 19440–19451

    Article  PubMed  CAS  Google Scholar 

  210. Wu J.W., Herman M., Liu L., Simoes S., Acker C.M., Figueroa H., et al., Small misfolded tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons, J. Biol. Chem., 2013, 288, 1856–1870

    Article  PubMed  CAS  Google Scholar 

  211. Iba M., Guo J.L., McBride J.D., Zhang B., Trojanowski J.Q., Lee V.M., Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer’s-like tauopathy, J. Neurosci., 2013, 33, 1024–1037

    Article  PubMed  CAS  Google Scholar 

  212. Lasagna-Reeves C.A., Castillo-Carranza D.L., Sengupta U., Guerrero-Munoz M.J., Kiritoshi T., Neugebauer V., et al., Alzheimer brainderived tau oligomers propagate pathology from endogenous tau, Sci. Rep., 2012, 2, 700

    Article  PubMed  Google Scholar 

  213. Hall G.F., Patuto B.A., Is tau now ready for admission to the prion club?, Prion, 2012, 6, 223–233

    Article  PubMed  CAS  Google Scholar 

  214. Canu N., Filesi I., Pristerà A., Ciotti M.T., Biocca S., Altered intracellular distribution of PrPC and impairment of proteasome activity in tau overexpressing cortical neurons, J. Alzheimers Dis., 2011, 27, 603–613

    PubMed  CAS  Google Scholar 

  215. Litman P., Barg J., Rindzoonski L., Ginzburg I., Subcellular localization of tau mRNA in differentiating neuronal cell culture: Implications for neuronal polarity, Neuron, 1993, 10, 627–638

    Article  PubMed  CAS  Google Scholar 

  216. Aronov S., Aranda G., Behar L., Ginzberg I., Axonal tau mRNA localization coincides with tau protein in living neuronal cells and depends on axonal targetting signal, J. Neurosci., 2001, 21, 6577–6587

    PubMed  CAS  Google Scholar 

  217. Schraen-Maschke S., Dhaenens C.M., Delacourte A., Sablonniere B., Microtubule-associated protein tau gene: a risk factor in human neurodegenerative diseases, Neurobiol. Dis., 2004, 15, 449–460

    Article  PubMed  CAS  Google Scholar 

  218. Caffrey T, Joachim C., Wade-Martins R., Haplotype-specific expression of the N-terminal exons 2 and 3 at the human MAPT locus, Neurobiol. Aging, 2008, 29, 1923–1929

    Article  PubMed  CAS  Google Scholar 

  219. Wegiel J., Gong C.X., Hwang Y.W., The role of DYRK1A in neurodegenerative diseases, FEBS J., 2011, 278, 236–245

    Article  PubMed  CAS  Google Scholar 

  220. McNaughton D., et al., Duplication of amyloid precursor protein (APP), but not prion protein (PRNP) gene is a significant cause of early onset dementia in a large UK series, Neurobiol. Aging, 2012, 33, 426.e13–e21

    CAS  Google Scholar 

  221. Mac Donald C.L., Johnson A.M., Cooper D., Nelson E.C., Werner N.J., Shimony J.S, et al., Detection of blast-related traumatic brain injury in U.S. military personnel, N. Engl. J. Med., 2011, 364, 2091–2100

    Article  PubMed  CAS  Google Scholar 

  222. Hall G.F., Poulos A., Cohen M.J., Sprouts emerging from the dendrites of axotomized lamprey central neurons have axonlike ultrastructure, J. Neurosci., 1989, 9, 588–599

    PubMed  CAS  Google Scholar 

  223. Hall G.F., Yao J., Selzer M., Kosik K.S., Cytoskeletal correlates to cell polarity loss following axotomy of lamprey central neurons, J. Neurocytol., 1997, 26, 733–753

    Article  PubMed  CAS  Google Scholar 

  224. Rose P.K., MacDermid V., Joshi M., Neuber-Hess M., Emergence of axons from distal dendrites of adult mammalian neurons following a permanent axotomy, Eur. J. Neurosci., 2001, 13, 1166–1176

    Article  PubMed  CAS  Google Scholar 

  225. Singleton R.H., Zhu J., Stone J.R., Povlishock J.T., Traumatically induced axotomy adjacent to the soma does not result in acute neuronal death, J. Neurosci., 2002, 22, 791–802

    PubMed  CAS  Google Scholar 

  226. Amadoro G., Corsetti V., Stringaro A., Colone M., D’Aguanno S., Meli G., et al., A NH2 tau fragment targets neuronal mitochondria at AD synapses: possible implications for neurodegeneration, J. Alzheimers Dis., 2010, 21, 445–470

    PubMed  CAS  Google Scholar 

  227. Thies E., Mandelkow E.M., Missorting of tau in neurons causes degeneration of synapses that can be rescued by the kinase MARK2/Par-1, J. Neurosci., 2007, 27, 2896–2907

    Article  PubMed  CAS  Google Scholar 

  228. Kins S., Crameri A., Evans D.R., Hemmings B.A., Nitsch R.M., Götz J., Reduced protein phosphatase 2A activity induces hyperphosphorylation and altered compartmentalization of tau in transgenic mice, J. Biol. Chem., 2001, 276, 38193–38200

    PubMed  CAS  Google Scholar 

  229. Lazarov O., Lee M., Peterson D.A., Sisodia S.S.,Evidence that synaptically released beta-amyloid accumulates as extracellular deposits in the hippocampus of transgenic mice, J. Neurosci., 2002, 22, 9785–9793

    PubMed  CAS  Google Scholar 

  230. Klein W.L., Synaptic targeting by Abeta oligomers (ADDLS) as a basis for memory loss in early Alzheimer’s disease, Alzheimers Dement., 2006, 2, 43–55

    Article  PubMed  Google Scholar 

  231. Walsh D.M., Klyubin I., Fadeeva J.V., Cullen W.K., Anwyl R., Wolfe M.S., et al., Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo, Nature, 2002, 416, 535–539

    Article  PubMed  CAS  Google Scholar 

  232. Tsai J., Grutzendler J., Duff K., Gan W.B., Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches, Nat. Neurosci., 2004, 7, 1181–1183

    Article  PubMed  CAS  Google Scholar 

  233. Boekhoorn K., Terwel D., Biemans B., Borghgraef P., Wiegert O., Ramakers G.J., et al., Improved long-term potentiation and memory in young tau-P301L transgenic mice before onset of hyperphosphorylation and tauopathy, J. Neurosci., 2006, 26, 3514–3523

    Article  PubMed  CAS  Google Scholar 

  234. Zempel H., Thies E., Mandelkow E., Mandelkow E.M., A beta oligomers cause localized Ca2+ elevation, missorting of endogenous tau into dendrites, tau phosphorylation, and endogenous tau into dendrites, tau phosphorylation, and destruction of microtubules and spines, J. Neurosci., 2010, 30, 11938–11950

    Article  PubMed  CAS  Google Scholar 

  235. Ittner L.M., Ke Y.D., Delerue F., Bi M., Gladbach A., van Eersel J., et al., Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models, Cell, 2010, 142, 387–397

    Article  PubMed  CAS  Google Scholar 

  236. Tackenberg C., Brandt R., Divergent pathways mediate spine alterations and cell death induced by amyloid-beta, wild-type tau, and R406W tau, J. Neurosci., 2009, 29, 14439–14450

    Article  PubMed  CAS  Google Scholar 

  237. Luebke J.I., Weaver C.M., Rocher A.B., Rodriguez A., Crimins J.L., Dickstein D.L., et al., Dendritic vulnerability in neurodegenerative disease: insights from analyses of cortical pyramidal neurons in transgenic mouse models, Brain Struct. Funct., 2010, 214, 181–199

    Article  PubMed  Google Scholar 

  238. Boekhoorn K., Joels M., Lucassen P.J., Increased proliferation reflects glial and vascular-associated changes, but not neurogenesis in the presenile Alzheimer hippocampus, Neurobiol. Dis., 24, 1–14, 2006

    Article  PubMed  CAS  Google Scholar 

  239. Hu W.T., Holtzman D.M., Fagan A.M., Shaw L.M., Perrin R., Arnold S.E., et al., Plasma multianalyte profiling in mild cognitive impairment and Alzheimer disease, Neurology, 2012, 79, 897–905

    Article  PubMed  CAS  Google Scholar 

  240. Clinton L.K., Blurton-Jones M., Myczek K., Trojanowski J.Q., LaFerla F.M., Synergistic interactions between Abeta, tau, and alphasynuclein: acceleration of neuropathology and cognitive decline, J. Neurosci., 2010, 30, 7281–7289

    Article  PubMed  CAS  Google Scholar 

  241. Perry G., Kawai M., Tabaton M., Onorato M., Mulvihill P., Richey P., et al., Neuropil threads of Alzheimer’s disease show a marked alteration of the normal cytoskeleton, J. Neurosci., 1991, 11, 1748–1755

    PubMed  CAS  Google Scholar 

  242. Ihara Y., Massive somatodendritic sprouting of cortical neurons in Alzheimer’s Disease, Brain Res., 1988, 459, 138–144

    Article  PubMed  CAS  Google Scholar 

  243. Uchida Y., Ohshima T., Sasaki Y., Suzuki H., Yanai S., Yamashita N., et al., Semaphorin3A signalling is mediated via sequential Cdk5 and GSK3beta phosphorylation of CRMP2: implication of common phosphorylating mechanism underlying axon guidance and Alzheimer’s disease, Genes Cells, 2005, 10, 165–179

    Article  PubMed  CAS  Google Scholar 

  244. Arimura N., Kaibuchi K., Neuronal polarity: from extracellular signals to intracellular mechanisms, Nat. Rev. Neurosci., 2007, 8, 194–205

    Article  PubMed  CAS  Google Scholar 

  245. Leugers C.J., Lee G., Tau potentiates nerve growth factor-induced mitogen-activated protein kinase signaling and neurite initiation without a requirement for microtubule binding, J. Biol. Chem., 2010, 285, 19125–19134

    Article  PubMed  CAS  Google Scholar 

  246. Cowan C.M., Shepherd D., Mudher A., Insights from Drosophila models of Alzheimer’s disease, Biochem. Soc. Trans., 2010, 38,4, 988–992

    Article  PubMed  CAS  Google Scholar 

  247. Mudher A., Shepherd D., Newman T.A., Mildren P., Jukes J.P., Squire A., et al., GSK-3beta inhibition reverses axonal transport defects and behavioural phenotypes in Drosophila, Mol. Psychiatry, 2004, 9, 522–530

    Article  PubMed  CAS  Google Scholar 

  248. Khurana V., Feany M.B., Connecting cell-cycle activation to neurodegeneration in Drosophila, Biochim. Biophys. Acta, 2007, 1772, 446–456

    Article  PubMed  CAS  Google Scholar 

  249. Hall G.F., The biology and pathobiology of tau protein, In: Kavallaris M. (Ed.), The cytoskeleton and human disease, Springer, 2012, 285–313

    Chapter  Google Scholar 

  250. Tian A.G., Deng W.M., Par-1 and tau regulate the anterior-posterior gradient of microtubules in Drosophila oocytes, Dev. Biol., 2009, 327, 458–464

    Article  PubMed  CAS  Google Scholar 

  251. Li S., Mallory M., Alford M., Tanaka S., Masliah E., Glutamate transporter alterations in Alzheimer disease are possibly associated with abnormal APP expression, J. Neuropathol. Exp. Neurol., 1997, 56, 901–911

    Article  PubMed  CAS  Google Scholar 

  252. Gorlovoy P., Larionov S., Pham T.T.H., Neumann H., Accumulation of tau induced in neurites by microglial proinflammatory mediators, FASEB J., 2009, 23, 2502–2513

    Article  PubMed  CAS  Google Scholar 

  253. Maxwell W.L., McCreath B.J., Graham D.I., Gennarelli T.A., Cytochemical evidence for redistribution of membrane pump calcium-ATPase and ecto-Ca-ATPase activity, and calcium influx in myelinated nerve fibres of the optic nerve after stretch injury, J. Neurocytol., 1995, 24, 925–42

    Article  PubMed  CAS  Google Scholar 

  254. Jafari S.S., Maxwell W.L., Neilson M., Graham D.I., Axonal cytoskeletal changes after non-disruptive axonal injury, J. Neurocytol., 1997, 26, 207–221

    Article  PubMed  CAS  Google Scholar 

  255. Uryu K., Chen X.H., Martinez D., Browne K.D., Johnson V.E., Graham D.I., et al., Multiple proteins implicated in neurodegenerative diseases accumulate in axons after brain trauma in humans, Exp. Neurol., 2007, 208, 185–192

    Article  PubMed  CAS  Google Scholar 

  256. Goldstein L.G., Fisher A., Tagge C., Wojnarowicz M.W., Zhang X.L., Sullivan J.S., et al., Blast exposure induces chronic traumatic encephalopathy and persistent defects in axonal conduction, synaptic plasticity, and hippocampal memory, Sci. Transl. Med., 2012, 4, 134ra60

    Article  PubMed  Google Scholar 

  257. Iijima-Ando K., Sekiya M., Maruko-Otake A., Ohtake Y., Suzuki E., Lu B., et al., Loss of axonal mitochondria promotes taumediated neurodegeneration and Alzheimer’s diseaserelated tau phosphorylation via PAR-1, PLoS Genet., 2012, 8, e1002918

    Article  PubMed  CAS  Google Scholar 

  258. Craig A.M., Graf E.R., Linhoff M.W., How to build a central synapse: clues from cell culture, Trends Neurosci., 2006, 29, 8–20

    Article  PubMed  CAS  Google Scholar 

  259. Perez M.R., Zheng H., Lex H., Van der Ploeg T., Koo E., The betaamyloid precursor protein of Alzheimer’s disease enhances neuron viability and modulates neuronal polarity, J. Neurosci., 1997, 17, 9407–9414

    PubMed  CAS  Google Scholar 

  260. LaPointe N.E., Morfini G., Pigino G., Gaisina I.N., Kozikowski A.P., Binder L.I., et al., The amino terminus of tau inhibits kinesin dependent axonal transport: implications for filament toxicity, J. Neurosci. Res., 2009, 87, 440–451

    Article  PubMed  CAS  Google Scholar 

  261. Pérez M., Cuadros R., Benítez M.J., Jiménez J.S., Interaction of Alzheimer’s disease amyloid ß peptide fragment 25–35 with tau protein, and with a tau peptide containing the microtubule binding domain, J. Alzheimers Dis., 2004, 6, 461–467

    PubMed  Google Scholar 

  262. Rank K.B., Pauley A.M., Bhattacharya K., Wang Z., Evans D.B., Fleck T.J., et al., Direct interaction of soluble human recombinant tau protein with Abeta 1–42 results in tau aggregation and hyperphosphorylation by tau protein kinase II, FEBS Lett., 2002, 514, 263–268

    Article  PubMed  CAS  Google Scholar 

  263. Guo J.T., Arai J., Miklossy J., McGeer P., Tau forms soluble complexes that may promote self aggregation of both into the insoluble forms observed in Alzheimer’s disease, Proc. Natl. Acad. Sci. USA, 2006, 103, 1953–1958

    Article  PubMed  CAS  Google Scholar 

  264. Funk K.E., Mrak R.E., Kuret J., Granulovacuolar degeneration (GVD) bodies of Alzheimer’s disease (AD) resemble late-stage autophagic organelles, Neuropathol. Appl. Neurobiol., 2011, 37, 295–306

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garth F. Hall.

About this article

Cite this article

Bhatia, N., Hall, G.F. Untangling the role of tau in Alzheimer’s disease: A unifying hypothesis. Translat.Neurosci. 4, 115–133 (2013). https://doi.org/10.2478/s13380-013-0114-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13380-013-0114-5

Keywords

Navigation