Advertisement

Translational Neuroscience

, Volume 3, Issue 1, pp 15–21 | Cite as

Synaesthesia: cross activations, high interconnectivity, and a parietal hub

  • Karsten Specht
Research Article

Abstract

This review summarizes the most recent studies on synaesthesia, particularly studies on grapheme-colour synaesthesia, time-space synaesthesia, and coloured-hearing synaesthesia. Based on behavioural as well as neuroimaging studies, there is emerging evidence that synaesthesia is not only caused by the cross activation of two sensory areas but that it may require additional binding processes, which are assumed to take place in the parietal lobe. However, divergent results exist with respect to the lateralization of this effect, i.e. whether it is the left or right parietal lobe most responsible. Studies also indicate that attention modulates the synaesthetic experience. Furthermore, it has been shown that synaesthetes demonstrate a higher level of connectivity, thus supporting the view of a genetic pre-disposition of synaesthesia.

Keywords

Synaesthesia Grapheme-colour synaesthesia Time-space synaesthesia Coloured-hearing synaesthesia Cross-activation theory Two-stage model Functional imaging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Baron-Cohen S., Wyke M. A., Binnie C., Hearing words and seeing colours: an experimental investigation of a case of synaesthesia, Perception, 1987, 16, 761–767PubMedCrossRefGoogle Scholar
  2. [2]
    Rich A. N., Bradshaw J. L., Mattingley J. B., A systematic, large-scale study of synaesthesia: implications for the role of early experience in lexical-colour associations, Cognition, 2005, 98, 53–84PubMedCrossRefGoogle Scholar
  3. [3]
    Simner J., Mulvenna C., Sagiv N., Tsakanikos E., Witherby S. A., Fraser C. et al. Synaesthesia: the prevalence of atypical cross-modal experiences, Perception, 2006, 35, 1024–1033PubMedCrossRefGoogle Scholar
  4. [4]
    Novich S., Cheng S., Eagleman D. M., Is synaesthesia one condition or many? A large-scale analysis reveals subgroups, J. Neuropsychol., 2011, 5, 353–371PubMedCrossRefGoogle Scholar
  5. [5]
    Eagleman D. M., Kagan A. D., Nelson S. S., Sagaram D., Sarma A. K., A standardized test battery for the study of synesthesia, J. Neurosci. Methods, 2007, 159, 139–145PubMedCrossRefGoogle Scholar
  6. [6]
    Barnett K. J., Finucane C., Asher J. E., Bargary G., Corvin A. P., Newell F. N. et al., Familial patterns and the origins of individual differences in synaesthesia, Cognition, 2008, 106, 871–893PubMedCrossRefGoogle Scholar
  7. [7]
    Hubbard E. M., Ramachandran V. S., Neurocognitive mechanisms of synesthesia, Neuron, 2005, 48, 509–520PubMedCrossRefGoogle Scholar
  8. [8]
    Tomson S. N., Avidan N., Lee K., Sarma A. K., Tushe R., Milewicz D. M. et al., The genetics of colored sequence synesthesia: suggestive evidence of linkage to 16q and genetic heterogeneity for the condition, Behav. Brain Res., 2011, 223, 48–52PubMedCrossRefGoogle Scholar
  9. [9]
    Smilek D., Moffatt B. A., Pasternak J., White B. N., Dixon M. J., Merikle P. M., Synaesthesia: a case study of discordant monozygotic twins, Neurocase, 2002, 8, 338–342PubMedCrossRefGoogle Scholar
  10. [10]
    Smilek D., Dixon M. J., Merikle P. M., Synaesthesia: discordant male monozygotic twins, Neurocase, 2005, 11, 363–370PubMedCrossRefGoogle Scholar
  11. [11]
    Pearce J. M., Synaesthesia, Eur. Neurol., 2007, 57, 120–124PubMedCrossRefGoogle Scholar
  12. [12]
    Ward J., Li R., Salih S., Sagiv N., Varieties of grapheme-colour synaesthesia: a new theory of phenomenological and behavioural differences, Conscious. Cogn., 2007, 16, 913–931PubMedCrossRefGoogle Scholar
  13. [13]
    Laeng B., Hugdahl K., Specht K., The neural correlate of colour distances revealed with competing synaesthetic and real colours, Cortex, 2011, 47, 320–331PubMedCrossRefGoogle Scholar
  14. [14]
    Paulsen H. G., Laeng B., Pupillometry of grapheme-color synaesthesia, Cortex, 2006, 42, 290–294PubMedCrossRefGoogle Scholar
  15. [15]
    Specht K., Laeng B., An independent component analysis of fMRI data of grapheme-color synaesthesia, J. Neuropsychol., 2011, 5, 203–213PubMedCrossRefGoogle Scholar
  16. [16]
    Rouw R., Scholte H. S., Increased structural connectivity in graphemecolor synesthesia, Nat. Neurosci., 2007, 10, 792–797PubMedCrossRefGoogle Scholar
  17. [17]
    Smilek D., Dixon M. J., Cudahy C., Merikle P. M., Synaesthetic photisms influence visual perception, J. Cogn. Neurosci., 2001, 13, 930–936PubMedCrossRefGoogle Scholar
  18. [18]
    Simner J., Glover L., Mowat A., Linguistic determinants of word colouring in grapheme-colour synaesthesia, Cortex, 2006, 42, 281–289PubMedCrossRefGoogle Scholar
  19. [19]
    Brang D., Rouw R., Ramachandran V. S., Coulson S., Similarly shaped letters evoke similar colors in grapheme-color synesthesia, Neuropsychologia, 2011, 49, 1355–1358PubMedCrossRefGoogle Scholar
  20. [20]
    Brang D., Hubbard E. M., Coulson S., Huang M., Ramachandran V. S., Magnetoencephalography reveals early activation of V4 in grapheme-color synesthesia, Neuroimage, 2010, 53, 268–274PubMedCrossRefGoogle Scholar
  21. [21]
    Dixon M. J., Smilek D., Merikle P. M., Not all synaesthetes are created equal: projector versus associator synaesthetes, Cogn. Affect. Behav. Neurosci., 2004, 4, 335–343PubMedCrossRefGoogle Scholar
  22. [22]
    Rouw R., Scholte H. S., Neural basis of individual differences in synesthetic experiences, J. Neurosci., 2010, 30, 6205–6213PubMedCrossRefGoogle Scholar
  23. [23]
    Palmeri T. J., Blake R., Marois R., Flanery M. A., Whetsell W. Jr., The perceptual reality of synesthetic colors, Proc. Natl. Acad. Sci. USA, 2002, 99, 4127–4131PubMedCrossRefGoogle Scholar
  24. [24]
    Laeng B., Svartdal F., Oelmann H., Does color synesthesia pose a paradox for early-selection theories of attention?, Psychol. Sci., 2004, 15, 277–281PubMedCrossRefGoogle Scholar
  25. [25]
    Meier B., Rothen N., When conditioned responses “fire back”: bidirectional cross-activation creates learning opportunities in synesthesia, Neuroscience, 2007, 147, 569–572PubMedCrossRefGoogle Scholar
  26. [26]
    Rouw R., Scholte H. S., Colizoli O., Brain areas involved in synaesthesia: a review, J. Neuropsychol., 2011, 5, 214–242PubMedCrossRefGoogle Scholar
  27. [27]
    Hubbard E. M., A real red-letter day, Nat. Neurosci., 2007, 10, 671–672PubMedCrossRefGoogle Scholar
  28. [28]
    Weiss P. H., Fink G. R., Grapheme-colour synaesthetes show increased grey matter volumes of parietal and fusiform cortex, Brain, 2009, 132, 65–70PubMedCrossRefGoogle Scholar
  29. [29]
    Brang D., Teuscher U., Miller L. E., Ramachandran V. S., Coulson S., Handedness and calendar orientations in time-space synaesthesia, J. Neuropsychol., 2011, 5, 323–332PubMedCrossRefGoogle Scholar
  30. [30]
    Jarick M., Jensen C., Dixon M. J., Smilek D., The automaticity of vantage point shifts within a synaesthetes’ spatial calendar, J. Neuropsychol., 2011, 5, 333–352PubMedCrossRefGoogle Scholar
  31. [31]
    Mann H., Korzenko J., Carriere J. S., Dixon M. J., Time-space synaesthesia—a cognitive advantage?, Conscious. Cogn., 2009, 18, 619–627PubMedCrossRefGoogle Scholar
  32. [32]
    Simner J., Mayo N., Spiller M. J., A foundation for savantism? Visuospatial synaesthetes present with cognitive benefits, Cortex, 2009, 45, 1246–1260PubMedCrossRefGoogle Scholar
  33. [33]
    Jarick M., Dixon M. J., Stewart M. T., Maxwell E. C., Smilek D., A different outlook on time: visual and auditory month names elicit different mental vantage points for a time-space synaesthete, Cortex, 2009, 45, 1217–1228PubMedCrossRefGoogle Scholar
  34. [34]
    Smilek D., Callejas A., Dixon M. J., Merikle P. M., Ovals of time: time-space associations in synaesthesia, Conscious. Cogn., 2007, 16, 507–519PubMedCrossRefGoogle Scholar
  35. [35]
    Price M. C., Mentzoni R. A., Where is January? The month-SNARC effect in sequence-form synaesthetes, Cortex, 2008, 44, 890–907PubMedCrossRefGoogle Scholar
  36. [36]
    Teuscher U., Brang D., Ramachandran V. S., Coulson S., Spatial cueing in time-space synesthetes: An event-related brain potential study, Brain Cogn., 2010, 74, 35–46PubMedCrossRefGoogle Scholar
  37. [37]
    Umilta C., Priftis K., Zorzi M., The spatial representation of numbers: evidence from neglect and pseudoneglect, Exp. Brain Res., 2009, 192, 561–569PubMedCrossRefGoogle Scholar
  38. [38]
    Fischer M. H., The future for SNARC could be stark, Cortex, 2006, 42, 1066–1068, discussion 1119–1023PubMedCrossRefGoogle Scholar
  39. [39]
    Eagleman D. M., The objectification of overlearned sequences: a new view of spatial sequence synesthesia, Cortex, 2009, 45, 1266–1277PubMedCrossRefGoogle Scholar
  40. [40]
    Baron-Cohen S., Harrison J., Synaesthesia: An account for coloured hearing, Leonardo, 1994, 27, 3Google Scholar
  41. [41]
    Marks L. E., On colored-hearing synesthesia: cross-modal translations of sensory dimensions, Psychol. Bull., 1975, 82, 303–331PubMedCrossRefGoogle Scholar
  42. [42]
    Hanggi J., Beeli G., Oechslin M. S., Jancke L., The multiple synaesthete E.S.: neuroanatomical basis of interval-taste and tone-colour synaesthesia, Neuroimage, 2008, 43, 192–203PubMedCrossRefGoogle Scholar
  43. [43]
    Beeli G., Esslen M., Jancke L., Time course of neural activity correlated with colored-hearing synesthesia, Cereb. Cortex, 2008, 18, 379–385PubMedCrossRefGoogle Scholar
  44. [44]
    Paulesu E., Harrison J., Baron-Cohen S., Watson J. D., Goldstein L., Heather J. et al., The physiology of coloured hearing. A PET activation study of colour-word synaesthesia, Brain, 1995, 118, 661–676PubMedCrossRefGoogle Scholar
  45. [45]
    Nunn J. A., Gregory L. J., Brammer M., Williams S. C., Parslow D. M., Morgan M. J. et al., Functional magnetic resonance imaging of synesthesia: activation of V4/V8 by spoken words, Nat. Neurosci., 2002, 5, 371–375PubMedCrossRefGoogle Scholar
  46. [46]
    Steven M. S., Blakemore C., Visual synaesthesia in the blind, Perception, 2004, 33, 855–868PubMedCrossRefGoogle Scholar
  47. [47]
    Jancke L., Langer N., A strong parietal hub in the small-world network of coloured-hearing synaesthetes during resting state EEG, J. Neuropsychol., 2011, 5, 178–202PubMedCrossRefGoogle Scholar
  48. [48]
    Cohen L., Jobert A., Le B. D., Dehaene S., Distinct unimodal and multimodal regions for word processing in the left temporal cortex, Neuroimage, 2004, 23, 1256–1270PubMedCrossRefGoogle Scholar
  49. [49]
    Hubbard E. M., Neurophysiology of synesthesia, Curr. Psychiatry Rep., 2007, 9, 193–199PubMedCrossRefGoogle Scholar
  50. [50]
    Hubbard E. M., Brang D., Ramachandran V. S., The cross-activation theory at 10, J. Neuropsychol., 2011, 5, 152–177PubMedCrossRefGoogle Scholar
  51. [51]
    Ramachandran V. S., Hubbard E. M., Psychophysical investigations into the neural basis of synaesthesia, Proc. Biol. Sci., 2001, 268, 979–983PubMedCrossRefGoogle Scholar
  52. [52]
    Bargary G., Mitchell K.J., Synaesthesia and cortical connectivity, Trends Neurosci., 2008, 31, 335–342PubMedCrossRefGoogle Scholar
  53. [53]
    Witthoft N., Winawer J., Synesthetic colors determined by having colored refrigerator magnets in childhood, Cortex, 2006, 42, 175–183PubMedCrossRefGoogle Scholar
  54. [54]
    Burrack A., Knoch D., Brugger P., Mitempfindung in synaesthetes: coincidence or meaningful association?, Cortex, 2006, 42, 151–154PubMedCrossRefGoogle Scholar
  55. [55]
    Friston K. J., Li B., Daunizeau J., Stephan K. E., Network discovery with DCM, Neuroimage, 2011, 56, 1202–1221PubMedCrossRefGoogle Scholar
  56. [56]
    Sporns O., The non-random brain: efficiency, economy, and complex dynamics, Front. Comput. Neurosci., 2011, 5, 5PubMedCrossRefGoogle Scholar
  57. [57]
    Grossenbacher P. G., Lovelace C. T., Mechanisms of synesthesia: cognitive and physiological constraints, Trends Cogn. Sci., 2001, 5, 36–41PubMedCrossRefGoogle Scholar
  58. [58]
    Rothen N., Nyffeler T., von Wartburg R., Muri R., Meier B., Parietooccipital suppression eliminates implicit bidirectionality in grapheme-colour synaesthesia, Neuropsychologia, 2010, 48, 3482–3487PubMedCrossRefGoogle Scholar
  59. [59]
    Esterman M., Verstynen T., Ivry R. B., Robertson L. C., Coming unbound: disrupting automatic integration of synesthetic color and graphemes by transcranial magnetic stimulation of the right parietal lobe, J. Cogn. Neurosci., 2006, 18, 1570–1576PubMedCrossRefGoogle Scholar
  60. [60]
    Mattingley J. B., Payne J. M., Rich A. N., Attentional load attenuates synaesthetic priming effects in grapheme-colour synaesthesia, Cortex, 2006, 42, 213–221PubMedCrossRefGoogle Scholar
  61. [61]
    Mattingley J. B., Rich A. N., Yelland G., Bradshaw J. L., Unconscious priming eliminates automatic binding of colour and alphanumeric form in synaesthesia, Nature, 2001, 410, 580–582PubMedCrossRefGoogle Scholar
  62. [62]
    Meier B., Rothen N., Training grapheme-colour associations produces a synaesthetic Stroop effect, but not a conditioned synaesthetic response, Neuropsychologia, 2009, 47, 1208–1211PubMedCrossRefGoogle Scholar
  63. [63]
    Mills C. B., Innis J., Westendorf T., Owsianiecki L., McDonald A., Effect of a synesthete’s photisms on name recall, Cortex, 2006, 42, 155–163PubMedCrossRefGoogle Scholar
  64. [64]
    Rothen N., Meier B., Grapheme-colour synaesthesia yields an ordinary rather than extraordinary memory advantage: evidence from a group study, Memory, 2010, 18, 258–264PubMedCrossRefGoogle Scholar
  65. [65]
    Rothen N., Meier B., Higher prevalence of synaesthesia in art students, Perception, 2010, 39, 718–720PubMedCrossRefGoogle Scholar
  66. [66]
    Ward J., Thompson-Lake D., Ely R., Kaminski F., Synaesthesia, creativity and art: what is the link?, Br. J. Psychol., 2008, 99, 127–141PubMedCrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  1. 1.Department of Biological and Medical PsychologyUniversity of BergenBergenNorway
  2. 2.Department of Clinical EngineeringHaukeland University HospitalBergenNorway

Personalised recommendations