Translational Neuroscience

, 2:256 | Cite as

Recent developments in neuropathology of autism spectrum disorders

  • Dora Polšek
  • Tomislav Jagatic
  • Maja Cepanec
  • Patrick R. Hof
  • Goran Šimić
Review Article


Autism spectrum disorders (ASD) represent complex neurodevelopmental disorders characterized by impairments in reciprocal social interactions, abnormal development and use of language, and monotonously repetitive behaviors. With an estimated heritability of more than 90%, it is the most strongly genetically influenced psychiatric disorder of the young age. In spite of the complexity of this disorder, there has recently been much progress in the research on etiology, early diagnosing, and therapy of autism. Besides already advanced neuropathologic research, several new technological innovations, such as sleep functional MRI, diffusion tensor imaging (DTI) and proton magnetic resonance spectroscopy imaging (1H-MRS) divulged promising breakthroughs in exploring subtle morphological and neurochemical changes in the autistic brain. This review provides a comprehensive summary of morphological and neurochemical alterations in autism known to date, as well as a short introduction to the functional research that has begun to advance in the last decade. Finally, we mention the progress in establishing new standardized diagnostic measures and its importance in early recognition and treatment of ASD.


Autism Autism spectrum disorder 


  1. [1]
    Bailey A., Phillips W., Rutter M., Autism: towards an integration of clinical, genetic, neuropsychological, and neurobiological perspectives. J. Child Psychol. Psychiatry, 1996, 37, 89–126PubMedCrossRefGoogle Scholar
  2. [2]
    Amaral D. G., Schumann C. M., Wu Nordahl C., Neuroanatomy of autism, Trends in Neuroscience, 2008, 31, 137–145CrossRefGoogle Scholar
  3. [3]
    Rice C., Prevalence of Autism Spectrum Disorders — Autism and Developmental Disabilities Monitoring Network, United States, 2006, MMWR Surveill. Summ., 2009, 58, 1–20Google Scholar
  4. [4]
    Courchesne E., Pierce K., Schumann C. M., Redcay E., Buckwalter J. A., Kennedy D. P., Morgan J., Mapping Early Brain Development in Autism, Neuron, 2007, 56, 399–413PubMedCrossRefGoogle Scholar
  5. [5]
    American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, 4th edition, 1994Google Scholar
  6. [6]
    Carper R., Courchesne E., Localized enlargement of the frontal lobe in autism, Biol. Psychiatry, 2005, 57, 126–133PubMedCrossRefGoogle Scholar
  7. [7]
    Palmen S. J. M. C., van Engeland H., Review on structural neuroimaging findings in autism, J. Neural Transm., 2004, 111, 903–929PubMedCrossRefGoogle Scholar
  8. [8]
    Palmen S.J., van Engeland H., Hof P.R., Schmitz C., Neuropathological findings in autism, Brain, 2004, 127(Pt 12), 2572–2583PubMedCrossRefGoogle Scholar
  9. [9]
    Courchesne, E., Pierce K., Brain overgrowth in autism during a critical time in development: implications for frontal pyramidal neuron and interneuron development and connectivity, Int. J. Dev. Neurosci., 2005, 23, 153–170PubMedCrossRefGoogle Scholar
  10. [10]
    Courchesne E, Carper R, Akshoomoff N., Evidence of brain overgrowth in the first year of life in autism, JAMA, 2003, 290, 337–344PubMedCrossRefGoogle Scholar
  11. [11]
    Carper R. A., Moses P., Tigue Z. D., Courchesne E., Cerebral lobes in autism: early hyperplasia and abnormal age effects, Neuroimage, 2002, 16, 1038–1051PubMedCrossRefGoogle Scholar
  12. [12]
    Herbert M. R., Ziegler D. A., Deutsch C. K., O’Brien L. M., Lange N., Bakardjiev A., et al., Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys, Brain, 2003, 126, 1182–1192PubMedCrossRefGoogle Scholar
  13. [13]
    Casanova M. F., Buxhoeveden D. P., Switala A. E., Roy E., Minicolumnar pathology in autism, Neurology, 2002, 58, 428–432PubMedGoogle Scholar
  14. [14]
    Lücke J., von der Malsburg C., Rapid processing and unsupervised learning in a model of the cortical macrocolumn, Neural Comput., 2004, 16, 501–533PubMedCrossRefGoogle Scholar
  15. [15]
    Casanova M. F., van Kooten I. A. J., Switala A. E., van Engeland H., Heinsen H., Steinbusch H. W. M. et al., Minicolumnar abnormalities in autism, Acta Neuropathol., 2006, 112, 287–303PubMedCrossRefGoogle Scholar
  16. [16]
    Rakic P., A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution, Trends Neurosci., 1995, 18, 383–388PubMedCrossRefGoogle Scholar
  17. [17]
    Rakic P., Limits of neurogenesis in primates, Science, 1985, 227, 1054–1056PubMedCrossRefGoogle Scholar
  18. [18]
    Dehaene-Lambertz G., Hertz-Pannier L., Dubois J., Nature and nurture in language acquisition: anatomical and functional brainimaging studies in infants, Trends Neurosci., 2006, 29, 367–373PubMedCrossRefGoogle Scholar
  19. [19]
    Redcay E., Courchesne E., Deviant functional magnetic resonance imaging patterns of brain activity to speech in 2-3-year-old children with autism spectrum disorder, Biol. Psychiatry, 2008, 64, 589–598PubMedCrossRefGoogle Scholar
  20. [20]
    Pierce K. Early functional brain development in autism and the promise of sleep fMRI, Brain Res., 2010, 1380, 162–174PubMedCrossRefGoogle Scholar
  21. [21]
    Dinstein I., Pierce K., Eyler L., Solso S., Malach R, Behrmann M. et al., Disrupted neural synchronization in toddlers with autism, Neuron, 2011, 70, 1218–1225PubMedCrossRefGoogle Scholar
  22. [22]
    Knaus T. A., Silver A. M., Kennedy M., Lindgren K. A., Dominick K. C., Siegel J. et al., Language laterality in autism spectrum disorder and typical controls: a functional, volumetric, and diffusion tensor MRI study, Brain Lang., 2010, 112, 113–120PubMedCrossRefGoogle Scholar
  23. [23]
    Kleinhans N. M, Richards T., Johnson L. C., Weaver K. E., Greenson J., Dawson G. et al., fMRI evidence of neural abnormalities in the subcortical face processing system in ASD Neuroimage, 2011, 54, 697–704PubMedCrossRefGoogle Scholar
  24. [24]
    Corbett B., Carmeana V., Ravizzae S., Wendelkenf C., Henryg M. L., Cartera C. et al., A functional and structural study of emotion and face processing in children with autism, Psychiatry Res., 2009, 173, 196–205PubMedCrossRefGoogle Scholar
  25. [25]
    Pierce K., Redcay E., Fusiform function in children with an autism spectrum disorder is a matter of “who”, Biol. Psychiatry, 2008, 64, 552–602PubMedCrossRefGoogle Scholar
  26. [26]
    van Kooten I. A., Palmen S. J., von Cappeln P., Steinbusch H. W., Korr H., Heinsen H., Hof P.R., van Engeland H., Schmitz C., Neurons in the fusiform gyrus are fewer and smaller in autism, Brain, 2008, 131, 987–999PubMedCrossRefGoogle Scholar
  27. [27]
    Oblak A. L., Rosene D. L., Kemper T. L., Bauman M. L., Blatt G. J., Altered posterior cingulate cortical cyctoarchitecture, but normal density of neurons and interneurons in the posterior cingulate cortex and fusiform gyrus in autism, Autism Res., 2011, 4, 200–211PubMedCrossRefGoogle Scholar
  28. [28]
    Bush G., Luu P., Posner M. I., Cognitive and emotional influences in anterior cingulate cortex, Trends Cogn. Sci., 2000, 4, 215–222PubMedCrossRefGoogle Scholar
  29. [29]
    Kennedy D. P., Courchesne E., Functional abnormalities of the default network during self- and other-reflection in autism, Soc. Cogn. Affect. Neurosci., 2008, 3, 177–190PubMedCrossRefGoogle Scholar
  30. [30]
    Agam Y., Joseph R. M., Barton J. J., Manoach D. S., Reduced cognitive control of response inhibition by the anterior cingulate cortex in autism spectrum disorders, Neuroimage, 2010, 52, 336–347PubMedCrossRefGoogle Scholar
  31. [31]
    Kana R. K., Keller T. A., Minshew N. J., Just M. A., Inhibitory control in high-functioning autism: decreased activation and underconnectivity in inhibition networks, Biol. Psychiatry, 2007, 62, 198–206PubMedCrossRefGoogle Scholar
  32. [32]
    Gomot M., Bernard F. A., Davis M. H., Belmonte M. K., Ashwin C., Bullmore E. T. et al., Change detection in children with autism: an auditory event-related fMRI study, Neuroimage, 2006, 29, 475–484PubMedCrossRefGoogle Scholar
  33. [33]
    Simms M. L., Kemper T. L., Timbie C. M., Bauman M. L., Blatt G. J., The anterior cingulate cortex in autism: heterogeneity of qualitative and quantitative cytoarchitectonic features suggests possible subgroups, Acta Neuropathol., 2009, 118, 673–684PubMedCrossRefGoogle Scholar
  34. [34]
    Noriuchi M., Kikuchi Y., Yoshiura T., Kira R., Shigeto H., Hara T. et al., Altered white matter fractional anisotropy and social impairment in children with autism spectrum disorder, Brain Res., 2010, 1362, 141–149PubMedCrossRefGoogle Scholar
  35. [35]
    Nimchinsky E.A., Vogt B.A., Morrison J.H., Hof P.R., Spindle neurons of the human anterior cingulate cortex, J Comp Neurol, 1995, 355(1):27–37PubMedCrossRefGoogle Scholar
  36. [36]
    Nimchinsky E.A., Gilissen E., Allman J.M., Perl D.P., Erwin J.M., Hof P.R., A neuronal morphologic type unique to humans and great apes, Proc Natl Acad Sci U S A. 1999, 96(9):5268–5273PubMedCrossRefGoogle Scholar
  37. [37]
    Allman J.M., Tetreault N.A., Hakeem A.Y., Manaye K.F., Semendeferi K., Erwin J.M., Park S., Goubert V., Hof P.R., The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans., Brain Struct Funct, 2010, 214(5–6):495–517PubMedCrossRefGoogle Scholar
  38. [38]
    Seeley W.W., Carlin D.A., Allman J.M., Macedo M.N., Bush C., Miller B.L., DeArmond S.J., Early frontotemporal dementia targets neurons unique to apes and humans, Ann Neurol, 2006, 60(6):660–667PubMedCrossRefGoogle Scholar
  39. [39]
    Kim E.J., Sidhu M., Gaus S.E., Huang E.J., Hof P.R., Miller B.L., Dearmond S.J., Seeley W.W., Selective frontoinsular von Economo neuron and fork cell loss in early behavioral variant frontotemporal dementia, Cereb Cortex, 2011- in pressGoogle Scholar
  40. [40]
    Paul L.K., Schieffer B., Brown W. S., Social processing deficits in agenesis of the corpus callosum: narratives from the Thematic Appreciation Test, Arch. Clin. Neuropsychol., 2004, 19, 215–225PubMedCrossRefGoogle Scholar
  41. [41]
    Brüne M., Schobel A., Karau R., Benali A., Faustmann P. M., Juckel G. et al., von Economo neuron density in the anterior cingulate cortex is reduced in early onset schizophrenia, Acta Neuropathol., 2010, 119, 771–778PubMedCrossRefGoogle Scholar
  42. [42]
    Santos M., Uppal N., Butti C., Wicinski B., Schmeidler J., Giannakopoulos P. et al., von Economo neurons in autism: a stereologic study of the frontoinsular cortex in children, Brain Res., 2011, 1380, 206–217PubMedCrossRefGoogle Scholar
  43. [43]
    Lombardo M. V., Baron-Cohen S., Unraveling the paradox of the autistic self, Wiley Interdiscipl. Rev. Cogn. Sci., 2010, 1, 393–403Google Scholar
  44. [44]
    Adolphs R., The neurobiology of social recognition, Curr. Opin. Neurobiol., 2001, 11, 231–239PubMedCrossRefGoogle Scholar
  45. [45]
    Sparks B. F., Friedman S. D., Shaw D. W., Aylward E. H., Echelard D., Artru A.A. et al., Brain structural abnormalities in young children with autism spectrum disorder, Neurology, 2002, 59, 184–192PubMedGoogle Scholar
  46. [46]
    Schumann C. M., Nordahl C. W., Bridging the gap between MRI and postmortem research in autism, Brain Res., 2011, 1380, 175–186PubMedCrossRefGoogle Scholar
  47. [47]
    Schumann C. M., Hamstra J., Goodlin-Jones B. L., Lotspeich L. J., Kwon H., Buonocore M. H. et al., The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages, J. Neurosci., 2004, 24, 6392–6401PubMedCrossRefGoogle Scholar
  48. [48]
    Juranek J., Filipek P. A., Berenji G. R., Modahl C., Osann K., Spence M.A., Association between amygdala volume and anxiety level: magnetic resonance imaging (MRI) study in autistic children, J. Child Neurol., 2006, 21, 1051–1058PubMedCrossRefGoogle Scholar
  49. [49]
    Munson J., Dawson G., Abbott R., Faja S., Webb S. J., Friedman S. D. et al., Amygdalar volume and behavioral development in autism, Arch. Gen. Psychiatry, 2006, 63, 686–669PubMedCrossRefGoogle Scholar
  50. [50]
    Amaral D. G., Schumann C. M., Nordahl C. W., Neuroanatomy of autism, Trends Neurosci., 2008, 31, 137–145PubMedCrossRefGoogle Scholar
  51. [51]
    Schumann C. M., Amaral D. G., Stereological analysis of amygdala neuron number in autism, J. Neurosci., 2006, 26, 7674–7679PubMedCrossRefGoogle Scholar
  52. [52]
    Kemper T. L., Bauman M. L., The contribution of neuropathologic studies to the understanding of autism, Neurol. Clin., 1993, 11, 175–187PubMedGoogle Scholar
  53. [53]
    Schmahmann J. D., An emerging concept. The cerebellar contribution to higher function. Arch. Neurol., 1991, 48, 1178–1187PubMedGoogle Scholar
  54. [54]
    Courchesne E., Saitoh O., Townsend J. P., Yeung-Courchesne R., Press G. A., Lincoln A. J. et al., Cerebellar hypoplasia and hyperplasia in infantile autism, Lancet, 1994, 343, 63–64PubMedCrossRefGoogle Scholar
  55. [55]
    Stanfield A. C., McIntosh A. M., Spencer M. D., Philip R., Gaur S., Lawrie S. M., Towards a neuroanatomy of autism: a systematic review and meta-analysis of structural magnetic resonance imaging studies, Eur. Psychiatry, 2008, 23, 289–299PubMedCrossRefGoogle Scholar
  56. [56]
    Piven J., Saliba K., Bailey J., Arndt S., An MRI study of autism: the cerebellum revisited, Neurology, 1997, 49, 546–551PubMedGoogle Scholar
  57. [57]
    Scott J. A., Schumann C. M., Goodlin-Jones B. L., Amaral D. G., A comprehensive volumetric analysis of the cerebellum in children and adolescents with autism spectrum disorder, Autism Res., 2009, 2, 246–257PubMedCrossRefGoogle Scholar
  58. [58]
    Hazlett H. C., Poe M. D., Gerig G., Gimpel Smith R., Piven J., Cortical gray and white brain tissue volume in adolescents and adults with autism., Biol. Psychiatry, 2006, 59, 1–6PubMedCrossRefGoogle Scholar
  59. [59]
    Barea-Goraly N., Kwon H., Menon V., Eliez S., Lotspeich L., Reis A.L., White matter structure in autism: preliminary evidence from diffusion tensor imaging, Biol. Psychiatry, 2004, 55, 323–326CrossRefGoogle Scholar
  60. [60]
    Bashat D. B., Kronfeld-Duenias V., Zachor D. A., Ekstein P. M., Hendler T., Tarrasch R. et al., Accelerated maturation of white matter in young children with autism: A high b value DWI study, Neuroimage, 2007, 37, 40–47PubMedCrossRefGoogle Scholar
  61. [61]
    Shukla D. K., Keehn B., Müller R. A., Tract-specific analyses of diffusion tensor imaging show widespread white matter compromise in autism spectrum disorder, J. Child Psychol. Psychiatry, 2011, 52, 286–295PubMedCrossRefGoogle Scholar
  62. [62]
    Spence S. J., Schneider M. T., The role of epilepsy and epileptiform EEGs in autism spectrum disorders, Pediatr. Res., 2009, 65, 599–606PubMedCrossRefGoogle Scholar
  63. [63]
    Chez M. G., Chang M., Krasne V., Coughlan C., Kominsky M., Schwartz A., Frequency of epileptiform EEG abnormalities in a sequential screening of autistic patients with no known clinical epilepsy from 1996 to 2005, Epilepsy Behav., 2006, 8, 267–271PubMedCrossRefGoogle Scholar
  64. [64]
    Aldred S., Moore K. M., Fitzgerald M., Waring R. H., Plasma amino acid levels in children with autism and their families, J. Autism Dev. Disord., 2003, 33, 93–97PubMedCrossRefGoogle Scholar
  65. [65]
    Moreno-Fuenmayor H., Borjas L., Arrieta A., Valera V., Socorro-Candanoza L., Plasma excitatory amino acids in autism, Invest. Clin., 1996, 37, 113–128PubMedGoogle Scholar
  66. [66]
    Shinohe A., Hashimoto K., Nakamura K., Tsujii M., Iwata Y., Tsuchiya K.J. et al., Increased serum levels of glutamate in adult patients with autism, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2006, 30, 1472–1477PubMedCrossRefGoogle Scholar
  67. [67]
    Purcell A. E., Jeon O. H., Zimmerman A. W., Blue M. E., Pevsner J., Postmortem brain abnormalities of the glutamate neurotransmitter system in autism, Neurology, 2001, 57, 1618–1628PubMedGoogle Scholar
  68. [68]
    McDougle C. J., Erickson C. A., Stigler K. A., Posey D. J., Neurochemistry in the pathophysiology of autism, J. Clin. Psychiatry, 2005, Suppl 10, 9–18Google Scholar
  69. [69]
    McCauley J. L., Olson L. M., Delahanty R., Amin T., Nurmi E. L., Organ E. L. et al., A linkage disequilibrium map of the 1-Mb 15q12 GABA(A) receptor subunit cluster and association to autism, Am. J. Med. Genet., 2004, 131B, 51–59PubMedCrossRefGoogle Scholar
  70. [70]
    Hogart A., Wu D., LaSalle J. M., Schanen N. C., The comorbidity of autism with the genomic disorders of chromosome 15q11.2-q13, Neurobiol. Dis., 2010, 38, 181–191PubMedCrossRefGoogle Scholar
  71. [71]
    Nurmi E. L., Amin T., Olson L. M., Jacobs M. M., McCauley J. L., Lam A. Y. et al., Dense linkage disequilibrium mapping in the 15q11-q13 maternal expression domain yields evidence for association in autism, Mol. Psychiatry, 2003, 8, 624–634PubMedCrossRefGoogle Scholar
  72. [72]
    Fatemi S. H., Reutiman T. J., Folsom T. D., Thuras P. D., GABA(A) receptor downregulation in brains of subjects with autism, J. Autism Dev. Disord., 2009, 39, 223–230PubMedCrossRefGoogle Scholar
  73. [73]
    Oblak A. L., Gibbs T. T., Blatt G. J., Decreased GABA(B) receptors in the cingulate cortex and fusiform gyrus in autism, J. Neurochem., 2010, 114, 1414–1423PubMedGoogle Scholar
  74. [74]
    Fatemi S. H, Halt A. R, Stary J. M, Kanodia R, Schulz S. C, Realmuto G. R., Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biol. Psychiatry, 2002, 52, 805–810PubMedCrossRefGoogle Scholar
  75. [75]
    Bernardi S., Anagnostou E., Shen J., Kolevzon A, Buxbaum J. D., Hollander E. et al., In vivo 1H-magnetic resonance spectroscopy study of the attentional networks in autism, Brain Res., 2011, 1380, 198–205PubMedCrossRefGoogle Scholar
  76. [76]
    Ey E., Leblond C. S., Bourgeron T., Behavioral profiles of mouse models for autism spectrum disorders, Autism Res., 2011, 4, 5–16PubMedCrossRefGoogle Scholar
  77. [77]
    Bangash M. A., Park J. M., Melnikova T., Wang D., Jeon S. K., Lee D. et al., Enhanced polyubiquitination of Shank3 and NMDA receptor in a mouse model of autism, Cell, 2011, 145, 758–772PubMedCrossRefGoogle Scholar
  78. [78]
    Peça J., Feliciano C., Ting J. T., Wang W., Wells M. F., Venkatraman T. N. et al., Shank3 mutant mice display autistic-like behaviours and striatal dysfunction, Nature, 2011, 472, 437–442PubMedCrossRefGoogle Scholar
  79. [79]
    Bozdagi O., Sakurai T., Papapetrou D., Wang X., Dickstein D. L., Takahashi N., et al., Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication, Mol. Autism, 2010, 1:15PubMedCrossRefGoogle Scholar
  80. [80]
    Ellegood J., Lerch J. P., Henkelman R. M., Brain abnormalities in a Neuroligin3 R451C knockin mouse model associated with autism, Autism Res., 2011, doi: 10.1002/aur.215Google Scholar
  81. [81]
    Gutierrez R. C., Hung J., Zhang Y., Kertesz A. C., Espina F. J., Colicos M. A., Altered synchrony and connectivity in neuronal networks expressing an autism-related mutation of neuroligin 3, Neuroscience, 2009, 162, 208–221PubMedCrossRefGoogle Scholar
  82. [82]
    Etherton M. R., Tabuchi K., Sharma M., Ko J., Südhof T. C., An autismassociated point mutation in the neuroligin cytoplasmic tail selectively impairs AMPA receptor-mediated synaptic transmission in hippocampus, EMBO J., 2011, 30, 2908–2919PubMedCrossRefGoogle Scholar
  83. [83]
    Testa-Silva G., Loebel A., Giugliano M., de Kock C.P., Mansvelder H.D., Meredith R.M., Hyperconnectivity and slow synapses during early development of medial prefrontal cortex in a mouse model for mental retardation and autism, Cereb. Cortex, 2011, Aug 19 [Epub ahead of print]_doi: 10.1093/cercor/bhr224Google Scholar
  84. [84]
    Hagerman R., Au J., Hagerman P., FMR1 premutation and full mutation molecular mechanisms related to autism, J. Neurodev. Dis., 2011, 3, 211–224CrossRefGoogle Scholar
  85. [85]
    DeLorey T. M., Sahbaie P., Hashemi E., Li W. W., Salehi A., Clark D. J., Somatosensory and sensorimotor consequences associated with the heterozygous disruption of the autism candidate gene, Gabrb3, Behav. Brain Res., 2011, 216, 36–45CrossRefGoogle Scholar
  86. [86]
    Fatemi S. H., Co-occurrence of neurodevelopmental genes in etiopathogenesis of autism and schizophrenia, Schizophr Res, 2010, 118, 303–304PubMedCrossRefGoogle Scholar
  87. [87]
    Holt R., Barnby G., Maestrini E., Bacchelli E., Brocklebank D., Sousa I. et al., Linkage and candidate gene studies of autism spectrum disorders in European populations, EU Autism MOLGEN Consortium, Eur. J. Hum. Genet., 2010, 18, 1013–1019PubMedCrossRefGoogle Scholar
  88. [88]
    McBride K. L., Varga E. A., Pastore M. T., Prior T. W., Manickam K., Atkin J. F. et al., Confirmation study of PTEN mutations among individuals with autism or developmental delays/mental retardation and macrocephaly, Autism Res., 2010, 3, 137–141PubMedCrossRefGoogle Scholar
  89. [89]
    Leboyer M., Philippe A., Bouvard M., Guilloud-Bataille M., Bondoux D., Tabuteau F. et al. Whole blood serotonin and plasma beta-endorphin in autistic probands and their first-degree relatives, Biol. Psychiatry, 1999, 45, 158–163PubMedCrossRefGoogle Scholar
  90. [90]
    Cook E. H. Jr., Leventhal B. L., Freedman D. X., Free serotonin in plasma: autistic children and their first-degree relatives, Biol. Psychiatry, 1988, 24, 488–491PubMedCrossRefGoogle Scholar
  91. [91]
    Hranilovic D., Bujas-Petkovic Z., Vragovic R., Vuk T., Hock K., Jernej B., Hyperserotonemia in adults with autistic disorder, J. Autism Dev. Disord., 2007, 37, 1934–1940PubMedCrossRefGoogle Scholar
  92. [92]
    Kolevzon A., Newcorn J. H., Kryzak L., Chaplin W., Watner D., Hollander E. et al., Relationship between whole blood serotonin and repetitive behaviors in autism, Psychiatry Res., 2010, 175, 274–276PubMedCrossRefGoogle Scholar
  93. [93]
    Brunton P.J., Russell J.A., The expectant brain: adapting for motherhood. Nat Rev Neurosci, 2008, 9(1), 11–25PubMedCrossRefGoogle Scholar
  94. [94]
    Neumann I.D., Brain oxytocin: a key regulator of emotional and social behaviours in both females and males, J Neuroendocrinol, 2008, 20(6):858–65PubMedCrossRefGoogle Scholar
  95. [95]
    Meyer-Lindenberg A., Domes G., Kirsch P., Heinrichs M., Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine., Nat Rev Neurosci, 2011, 12(9), 524–538 doi: 10.1038/nrn3044PubMedCrossRefGoogle Scholar
  96. [96]
    Insel T. R., O’Brien D. J., Leckman J. F., Oxytocin, vasopressin, and autism: is there a connection?, Biol. Psychiatry, 1999, 45, 145–157PubMedCrossRefGoogle Scholar
  97. [97]
    Ferguson J. N, Young L. J, Hearn E. F, Matzuk M. M, Insel T. R, Winslow J. T., Social amnesia in mice lacking the oxytocin gene, Nat. Genet., 2000, 25, 284–288PubMedCrossRefGoogle Scholar
  98. [98]
    Šešo-Šimić Đ., Sedmak G., Hof P.R., Šimić G., Recent advances in the neurobiology of attachment behavior, Transl. Neurosci., 2010, 2, 148–159Google Scholar
  99. [99]
    Gale S., Ozonoff S., Lainhart J., Brief report: pitocin induction in autistic and nonautistic individuals, J. Autism Dev. Disord., 2003, 33, 205–208PubMedCrossRefGoogle Scholar
  100. [100]
    Insel T. R., A neurobiological basis of social attachment, Am. J. Psychiatry, 1997, 154, 726–735PubMedGoogle Scholar
  101. [101]
    Lotspeich L. J., Kwon H., Schumann C. M., Fryer S. L., Goodlin-Jones B. L., Buonocore M. H. et al., Investigation of neuroanatomical differences between autism and Asperger syndrome, Arch. Gen. Psychiatry, 2004, 61, 291–298PubMedCrossRefGoogle Scholar
  102. [102]
    Luyster R., Gotham K., Guthrie W., Coffing M., Petrak R., Pierce K. et al., The autism diagnostic observation schedule-toddler module: a new module of a standardized diagnostic measure for autism spectrum disorders, J. Autism Dev. Disord., 2009, 39, 1305–1320PubMedCrossRefGoogle Scholar
  103. [103]
    Pierce K., Carter C., Weinfeld M., Desmond J., Hazin R., Bjork R. et al., Detecting, studying, and treating autism early: the one-year wellbaby check-up approach, J. Pediatr., 2011, 159, 458–465PubMedCrossRefGoogle Scholar
  104. [104]
    Uppal N., Papapetrou D., Santos M., Bozdagi O, Buxbaum J. D., Hof P. R., Autism spectrum disorders: neuropathology and animal models, Envir. Health Perspect., submittedGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2011

Authors and Affiliations

  • Dora Polšek
    • 1
  • Tomislav Jagatic
    • 1
  • Maja Cepanec
    • 2
  • Patrick R. Hof
    • 3
  • Goran Šimić
    • 1
  1. 1.Croatian Institute for Brain ResearchUniversity of Zagreb Medical SchoolZagrebCroatia
  2. 2.Faculty of Education and Rehabilitation Sciences, Department of Speech and Language PathologyUniversity of ZagrebZagrebCroatia
  3. 3.Fishberg Department of Neuroscience and Friedman Brain InstituteMount Sinai School of MedicineNew YorkUSA

Personalised recommendations