Above genetics: Lessons from cerebral development in autism

  • Emily L. WilliamsEmail author
  • Manuel F. Casanova
Review Article


While a distinct minicolumnar phenotype seems to be an underlying factor in a significant portion of cases of autism, great attention is being paid not only to genetics but to epigenetic factors which may lead to development of the conditions. Here we discuss the indivisible role the molecular environment plays in cellular function, particularly the pivotal position which the transcription factor and adhesion molecule, β-catenin, occupies in cellular growth. In addition, the learning environment is not only integral to postnatal plasticity, but the prenatal environment plays a vital role during corticogenesis, neuritogenesis, and synaptogenesis as well. To illustrate these points in the case of autism, we review important findings in genetics studies (e.g., PTEN, TSC1/2, FMRP, MeCP2, Neurexin-Neuroligin) and known epigenetic factors (e.g., valproic acid, estrogen, immune system, ultrasound) which may predispose towards the minicolumnar and connectivity patterns seen in the conditions, showing how one-gene mutational syndromes and exposure to certain CNS teratogens may ultimately lead to comparable phenotypes. This in turn may shed greater light on how environment and complex genetics combinatorially give rise to a heterogenetic group of conditions such as autism.


Beta catenin Minicolumns Neural stem cells Rett syndrome Fragile X syndrome Tuberous sclerosis Valproic acid Pten phosphohydrolase Ultrasonography Cell adhesion molecules neuronal 


  1. [1]
    Liu J., Nyholt D.R., Magnussen P., Parano E., Pavone P., Geschwind D., et al., A genomewide screen for autism susceptibility loci, Am. J. Hum. Genet., 2001, 69, 327–340PubMedGoogle Scholar
  2. [2]
    Yonan A.L., Alarcón M., Cheng R, Magnusson P.K., Spence S.J., Palmer A.A., et al., A genomewide screen of 345 families for autism-susceptibility loci, Am. J. Hum. Genet., 2003, 73, 886–897PubMedGoogle Scholar
  3. [3]
    Williams E.L., Casanova M.F., Autism or autisms? Finding the lowest common denominator, Bol. Asoc. Méd. P.R., 2010 Oct, 102(4), 17–24Google Scholar
  4. [4]
    Minshew N.J., Williams D.L., The new neurobiology of autism: Cortex, connectivity, and neuronal organization, Arch. Neurol., 2007, 64, 945–950PubMedGoogle Scholar
  5. [5]
    Casanova M.F., Buxhoeveden D.P., Switala A.E., Roy E. Minicolumnar pathology in autism, Neurology, 2002, 58, 428–432PubMedGoogle Scholar
  6. [6]
    Chenn A., Walsh C.A., Regulation of cerebral cortical size by control of cell cycle exit in neural precursors, Science, 2002, 297, 365–369PubMedGoogle Scholar
  7. [7]
    Bauman M.L., Kemper T.L., Neuroanatomic observations of the brain in autism: A review and future directions, Int. J. Dev. Neurosci., 2005, 23, 183–187PubMedGoogle Scholar
  8. [8]
    Herbert M.R., Ziegler D.A., Makris N., Filipek P.A., Kemper T.L., Normandin J.J., et al., Localization of white matter volume increase in autism and developmental language disorder, Ann. Neurol., 2004, 55, 530–540PubMedGoogle Scholar
  9. [9]
    Rinaldi T., Kulangara K., Antoniello K., Markram H., Elevated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid, Proc. Natl. Acad. Sci. U.S.A., 2007, 104, 13501–13506PubMedGoogle Scholar
  10. [10]
    Rinaldi T., Perrodin C., Markram H., Hyper-connectivity and hyperplasticity in the medial prefrontal cortex in the valproic acid animal model of autism, Front. Neural Circuits, 2008, 2, 1–7Google Scholar
  11. [11]
    Casanova M.F., El-Baz A., Mott M., Mannheim G., Hassan H., Fahmi R., et al., Reduced gyral window and corpus callosum size in autism: Possible macroscopic correlates of a minicolumnopathy, J. Autism Dev. Disord., 2009, 39, 751–764PubMedGoogle Scholar
  12. [12]
    Beaudet A.L., Autism: highly heritable but not inherited, Nat. Med., 2007, 13, 534–536PubMedGoogle Scholar
  13. [13]
    Muhle R., Trentacoste S.V., Rapin I., The genetics of autism, Pediatrics, 2004, 113, e472–e486PubMedGoogle Scholar
  14. [14]
    Herbert M.R., Contributions of the environment and environmentally vulnerable physiology to autism spectrum disorders, Curr. Opin. Neurol., 2010, 23, 103–110PubMedGoogle Scholar
  15. [15]
    Courchesne E., Carper R., Akshoomoff N., Evidence of brain overgrowth in the first year of life in autism, J. Am. Med. Assoc., 2003, 290, 337–344Google Scholar
  16. [16]
    Rogers S.J., Developmental regression in autism spectrum disorders, Ment. Retard. Dev. Disabil. Res. Rev., 2004, 10, 139–143PubMedGoogle Scholar
  17. [17]
    Kumar V., Zhang M.X., Swank M.W., Kunz J., Wu G.Y., Regulation of dendritic morphogenesis by Ras-PI3K-Akt-mTOR and Ras-MAPK signaling pathways, J. Neurosci., 2005, 25, 11288–11299PubMedGoogle Scholar
  18. [18]
    McDaniel M.A., Big-brained people are smarter: A meta-analysis of the relationship between in vivo brain volume and intelligence, Intelligence, 2005, 33, 337–346Google Scholar
  19. [19]
    Burrell B., Postcards from the brain museum, Broadway Books, New York, 2004Google Scholar
  20. [20]
    Happé F., Frith U., The weak central coherence account: Detail-focused cognitive style in autism spectrum disorders, J. Autism Dev. Disord., 2006, 36, 5–25PubMedGoogle Scholar
  21. [21]
    Treffert D.A., Extraordinary people: Understanding savant syndrome, iUniverse, Lincoln, 2006Google Scholar
  22. [22]
    Redcay E., Courchesne E., When is the brain enlarged in autism? A meta-analysis of all brain size reports, Biol. Psychiatry, 2005, 58, 1–9PubMedGoogle Scholar
  23. [23]
    Pilarsky R., Cowden syndrome: A critical review of the clinical literature, J. Genet. Couns., 2009, 18, 13–27Google Scholar
  24. [24]
    McBride K.L., Varga E.A., Pastore M.T., Prior T.W., Manickam K, Atkin J.F., et al., Confirmation of study of PTEN mutations among individuals with autism or developmental delays/mental retardation and macrocephaly, Biol. Autism Res., 2010, 3, 137–141Google Scholar
  25. [25]
    Tamguney T., Stokoe D., New insights into PTEN, J. Cell. Sci., 2007, 120, 4071–4079PubMedGoogle Scholar
  26. [26]
    Nan X., Ng H.H., Johnson C.A., Laherty C.D., Turner B.M., Eisenman R.N., et al., Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex, Nature, 1998, 393, 386–389PubMedGoogle Scholar
  27. [27]
    Muotri A.R., Marchetto M.C., Coufal N.G., Oefner R., Yeo G., Nakashima K, et al., L1 retrotransposition in neurons is modulated by MeCP2, Nature, 2010, 468, 443–446PubMedGoogle Scholar
  28. [28]
    Skene P.J., Illingworth R.S., Webb S., Kerr A.R., James K.D., Turner D.J., et al., Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state, Mol. Cell, 2010, 37, 457–468PubMedGoogle Scholar
  29. [29]
    Nelson W.J., Nusse R., Convergence of Wnt, β-catenin, and cadherin pathways, Science, 2004, 303, 1483–1487PubMedGoogle Scholar
  30. [30]
    Persad S., Troussard A.A., McPhee T.R., Mulholland D.J., Dedhar S., Tumor suppressor PTEN inhibits nuclear accumulation of beta-catenin and T cell/lymphoid enhancer factor 1-mediated transcriptional activation, J. Cell Biol., 2001, 153, 1161–1174PubMedGoogle Scholar
  31. [31]
    Carney R.M., Wolpert C.M., Ravan S.A., Shahbazian M., Ashley-Koch A., Cuccaro M.L., et al., Identification of MeCP2 mutations in a series of females with autistic disorder, Pediatr. Neurol., 2003, 28, 205–211PubMedGoogle Scholar
  32. [32]
    Samaco R.C., Nagarajan R.P., Braunschweig D., LaSalle J.M., Multiple pathways regulate MeCP2 expression in normal brain development and exhibit defects in autism-spectrum disorders, Hum. Mol. Genet., 2004, 13, 629–639PubMedGoogle Scholar
  33. [33]
    Steelman L.S., Abrams S.L., Whelan J., Bertrand F.E., Ludwig D.E., Bäsecke J., et al., Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia, Leukemia, 2008, 22, 686–707PubMedGoogle Scholar
  34. [34]
    Kim D.H., Sarbassov D.D., Ali S.M., King J.E., Latek R.R., Erdjument-Bromage H., et al., mTOR interacts with raptor to form a nutrientsensitive complex that signals to the cell growth machinery, Cell, 2002, 110, 163–175PubMedGoogle Scholar
  35. [35]
    Wiznitzer M., Autism and tuberous sclerosis, J. Child Neurol., 2004, 19, 675–679PubMedGoogle Scholar
  36. [36]
    Ehninger D., De Vries P.J., Silva A.J., From mTOR to cognition: Molecular and cellular mechanisms of cognitive impairments in tuberous sclerosis, J. Intellect. Disabil. Res., 2009, 53, 838–851PubMedGoogle Scholar
  37. [37]
    Griffiths P.D., Gardner S.A., Smith M., Rittey C., Powell T., Hemimegalencephaly and focal megalencephaly in tuberous sclerosis complex, Am. J. Neuroradiol., 1998, 19, 1935–1938PubMedGoogle Scholar
  38. [38]
    Christophe C., Sékhara T., Rypens F., Ziereisen F., Christiaens F., Dan B., MRI spectrum of cortical malformations in tuberous sclerosis complex, Brain Dev., 2000, 22, 487–493PubMedGoogle Scholar
  39. [39]
    Way S.W., McKenna J. 3rd, Mietzsch U., Reith R.M., Wu H.C., Gambello M.J., Loss of Tsc2 in radial glia models the brain pathology of tuberous sclerosis complex in the mouse, Hum. Mol. Genet., 2009, 18, 1252–1265PubMedGoogle Scholar
  40. [40]
    Bailey A., Luthert P., Dean A., Harding B., Janota I., Montgomery M., et al., A clinicopathological study of autism, Brain, 1998, 121, 889–905PubMedGoogle Scholar
  41. [41]
    Wegiel J., Kuchna I., Nowicki K., Imaki H., Wegiel J., Marchi E., et al., The neuropathology of autism: Defects of neurogenesis and neuronal migration, and dysplastic changes, Acta Neuropathol., 2010, 119, 755–770PubMedGoogle Scholar
  42. [42]
    Mak B.C., Takemaru K., Kenerson H.L., Moon R.T., Yeung R.S., The tuberin-hamartin complex negatively regulates beta-catenin signaling activity, J. Biol. Chem., 2003, 278, 5947–5951PubMedGoogle Scholar
  43. [43]
    Daugherty R.L., Gottardi C.J., Phospho-regulation of β-catenin adhesion and signaling functions, Physiology, 2007, 22, 303–309PubMedGoogle Scholar
  44. [44]
    Brown V., Jin P., Ceman S., Darnell J.C., O’Donnell W.T., Tenenbaum S.A., et al., Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome, Cell, 2001, 107, 477–487PubMedGoogle Scholar
  45. [45]
    Luo Y., Shan G., Guo W., Smrt R.D., Johnson E.B., Li X., et al., Fragile X mental retardation protein regulates proliferation and differentiation of adult neural stem/progenitor cells, PLoS Genet., 2010, 6, e1000898PubMedGoogle Scholar
  46. [46]
    Hagerman R.J., Fragile X syndrome, In: Bauman M.L., Kemper T.L. (Eds.), The neurobiology of autism, 2nd ed., The Johns Hopkins University Press, London, 2005, 251–264Google Scholar
  47. [47]
    Fatemi S.H., Folsom T.D., The role of fragile X mental retardation protein in major mental disorders, Neuropharmacology, 2011, 60, 1221–1226PubMedGoogle Scholar
  48. [48]
    Zalfa F., Marcello G., Primerano B., Moro A., Di Penta A., Reis S., et al., The fragile X syndrome protein FMRP associates with BC1 RNA and regulates the translation of specific mRNAs at synapses, Cell, 2003, 112, 317–327PubMedGoogle Scholar
  49. [49]
    Castrén M., Tervonen T., Kärkkäinen V., Heinonen S., Castrén E., Larsson K., et al., Altered differentiation of neural stem cells in fragile X syndrome, Proc. Natl. Acad. Sci. U.S.A., 2005, 102, 17834–17839PubMedGoogle Scholar
  50. [50]
    Tervonen T.A., Louhivuori V., Sun X., Hokkanen M.E., Kratochwil C.F., Zebryk P., et al., Aberrant differentiation of glutamatergic cells in neocortex of mouse model for fragile X syndrome, Neurobiol. Dis., 2009, 33, 250–259PubMedGoogle Scholar
  51. [51]
    De Vries B.B.A., Mohkamsing S., Van den Ouweland A.M.W., Mol E., Gelsema K., Van Rijn M., et al., Screening for the fragile X syndrome among the mentally retarded: a clinical study, J. Med. Genet., 1999, 36, 467–470PubMedGoogle Scholar
  52. [52]
    Chausovsky A., Bershadsky A.D., Borisy G.G., Cadherin-mediated regulation of microtubule dynamics, Nat. Cell Biol., 2000, 2, 797–804PubMedGoogle Scholar
  53. [53]
    Reynolds A.B., Daniel J., McCrea P.D., Wheelock M.J., Wu J., Zhang Z., Identification of a new catenin: the tyrosine kinase substrate p120cas associates with E-cadherin complexes, Mol. Cell Biol., 1994, 14, 8333–8342PubMedGoogle Scholar
  54. [54]
    Bienz M., β-catenin: A pivot between cell adhesion and Wnt signalling, Curr. Biol., 2004, 15, R65Google Scholar
  55. [55]
    Ziegler S., Röhrs S., Tickenbrock L., Möröy T., Klein-Hitpass L., Vetter I.R., et al., Novel target genes of the Wnt pathway and statistical insights into Wnt target promoter regulation, FEBS J., 2005, 272, 1600–1615PubMedGoogle Scholar
  56. [56]
    Gearhart J., Pashos E.E., Prasad M.K., Pluripotency redux—advances in stem-cell research, N. Engl. J. Med., 2007, 357, 1469–1472PubMedGoogle Scholar
  57. [57]
    Cotterman R., Jin V.X., Krig S.R., Lemen J.M., Wey A., Farnham P.J., et al., N-Myc regulates a widespread euchromatic program in the human genome partially independent of its role as a classic transcription factor, Cancer Res., 2008, 68, 9654–9662PubMedGoogle Scholar
  58. [58]
    Nusse R., A list of target genes of Wnt/beta-catenin signaling [online resource], Howard Hughes Medical Center, Stanford, 2009 [accessed 2011 Jan 28], Google Scholar
  59. [59]
    Ding Q., Xia W., Liu J.C., Yang J.Y., Lee D.F., Xia J., et al., Erk associates with and primes GSK-3β for its inactivation resulting in upregulation of β-catenin, Mol. Cell, 2005, 19, 159–170PubMedGoogle Scholar
  60. [60]
    Gherzi R., Trabucchi M., Ponassi M., Ruggiero T., Corte G., Moroni C., et al., The RNA-binding protein KSRP promotes decay of betacatenin mRNA and is inacitvated by PI3K-AKT signaling, PLoS Biol., 2006, 5, e5PubMedGoogle Scholar
  61. [61]
    Bamji S.X., Shimazu K., Kimes N., Huelsken J., Birchmeier W., Lu B., et al., Role of beta-catenin in synaptic vesicle localization and presynaptic assembly, Neuron, 2003, 40, 719–731PubMedGoogle Scholar
  62. [62]
    Kwon C.H., Luikart B.W., Powell C.M., Zhou J., Matheny S.A., Zhang W., et al., Pten regulates neuronal arborization and social interaction in mice, Neuron, 2006, 50, 377–388PubMedGoogle Scholar
  63. [63]
    Wang Y., Greenwood J.S., Calcagnotto M.E., Kirsch H.E., Barbaro N.M., Baraban S.C., Neocortical hyperexcitability in a human case of tuberous sclerosis complex and mice lacking neuronal expression of TSC1, Ann. Neurol., 2007, 61, 139–152PubMedGoogle Scholar
  64. [64]
    Nau H., Rating D., Koch S., Häuser I., Helge H., Valproic acid and its metabolites: Placental transfer, neonatal pharmacokinetics, transfer via mother’s milk and clinical status in neonates of epileptic mothers, J. Pharmacol. Exp. Ther., 1981, 219, 768–777PubMedGoogle Scholar
  65. [65]
    DiLiberty J.H., Farndon P.A., Dennis N.R., Curry C.J., The fetal valproate syndrome, Am. J. Med. Genet., 1984, 19, 473–481Google Scholar
  66. [66]
    Christianson A.L., Chesler N., Kromberg J.G., Fetal valproate syndrome: Clinical and neuro-developmental features in two sibling pairs, Dev. Med. Child Neurol., 1994, 36, 361–369PubMedGoogle Scholar
  67. [67]
    Moore S.J., Turnpenny P., Quinn A., Glover S., Lloyd D.J., Montgomery T., et al., A clinical study of 57 children with fetal anticonvulsant syndromes, J. Med. Genet., 2000, 37, 489–497PubMedGoogle Scholar
  68. [68]
    Rasalam A.D., Hailey H., Williams J.H., Moore S.J., Turnpenny P.D., Lloyd D.J., et al., Characteristics of fetal anticonvulsant syndrome associated autistic disorder, Dev. Med. Child Neurol., 2005, 47, 551–555PubMedGoogle Scholar
  69. [69]
    Markram H., Rinaldi T., Markram K.. The intense world syndrome—an alternative hypothesis for autism, Front. Neurosci., 2007, 1, 77–96PubMedGoogle Scholar
  70. [70]
    Shimshoni J.A., Dalton E.C., Jenkins A., Eyal S., Ewan K., Williams R.S., et al., The effects of central nervous system-active valproic acid constitutional isomers, cyclopropyl analogs, and amide derivatives on neuronal growth cone behavior, Mol. Pharmacol., 2007, 71, 884–892PubMedGoogle Scholar
  71. [71]
    Billin A.N., Thirlwell H., Ayer D.E., β-catenin-histone deacetylase interactions regulate the transition of LEF1 from a transcriptional repressor to an activator, Mol. Cell Biol., 2000, 20, 6882–6890PubMedGoogle Scholar
  72. [72]
    Wiltse J., Mode of action: inhibition of histone deacetylase, altering WNT-dependent gene expression, and regulation of beta-catenin—developmental effects of valproic acid, Crit. Rev. Toxicol., 2005, 35, 727–738PubMedGoogle Scholar
  73. [73]
    Wang Z., Xu L., Zhu X., Cui W., Sun Y., Nishijo H., et al., Demethylation of specitic Wnt/β-catenin pathway genes and its upregulation in rat brain induced by prenatal valproate exposure, Anat. Rec., 2010, 293, 1947–1953Google Scholar
  74. [74]
    Raballo R., Rhee J., Lyn-Cook R., Leckman J.F., Schwartz M.L., Vaccarino F.M., Basic fibroblast growth factor (Fgf2) is necessary for cell proliferation and neurogenesis in the developing cerebral cortex., J. Neurosci., 2000, 20, 5012–5023PubMedGoogle Scholar
  75. [75]
    Ryves J.W., Dalton E.C., Harwood A.J., Williams R.S., GSK-3 activity in neocortical cells is inhibited by lithium but not carbamazepine or valproic acid, Bipolar Disord., 2005, 7, 260–265Google Scholar
  76. [76]
    Jope R.S., Lithium and GSK-3: one inhibitor, two inhibitory actions, multiple outcomes, Trends Pharmacol. Sci., 2003, 24, 441–443PubMedGoogle Scholar
  77. [77]
    Yuskaitis C.J., Mines M.A., King M.K., Sweatt J.D., Miller C.A., Jope R.S., Lithium ameliorates altered glycogen synthase kinase-3 and behavior in a mouse model of fragile X syndrome, Biochem. Pharmacol., 2010, 79, 632–646PubMedGoogle Scholar
  78. [78]
    Hashimoto R., Senatorov V., Kanai H., Leeds P., Chuang D.M., Lithium stimulates progenitor proliferation in cultured brain neurons, Neuroscience, 2003, 117, 55–61PubMedGoogle Scholar
  79. [79]
    Laeng P., Pitts R.L., Pemire A.L., Drabik C.E., Weiner A., Tang H., et al., The mood stabilizer valproic acid stimulates GABA neurogenesis from rat forebrain stem cells, J. Neurochem., 2004, 91, 238–251PubMedGoogle Scholar
  80. [80]
    Vecsler M., Simon A.J., Amariglio N., Rechavi G., Gak E., MeCP2 deficiency downregulates specific nuclear proteins that could be partially recovered by valproic acid in vitro, Epigenetics, 2010, 5, 61–67PubMedGoogle Scholar
  81. [81]
    Tropea D., Giacometti E, Wilson N.R., Beard C., McCurry C., Fu D.D., et al., Partial reversal of Rett syndrome-like symptoms in MeCP2 mutant mice, Proc. Natl. Acad. Sci. U.S.A., 2009, 106, 2029–2034PubMedGoogle Scholar
  82. [82]
    McCaffrey P., Deustch C.K., Macrocephaly and the control of brain growth in autistic disorders, Prog. Neurobiol., 2005, 77, 38–56Google Scholar
  83. [83]
    Croen L.A., Goines P., Braunschweig D., Yolkne R., Yoshida C.K., Grether J.K., et al., Brain-derived neurotrophic factor and autism: Maternal and infant peripheral blood levels in the Early Markers for Autism (EMA) study, Autism Res., 2008, 1, 130–137PubMedGoogle Scholar
  84. [84]
    Vaccarino F.M., Grigorenko E.L., Smith K.M., Stevens H.E., Regulation of cerebral cortical size and neuron number by fibroblast growth factors: Implications for autism, J. Autism Dev. Disord., 2009, 39, 511–520PubMedGoogle Scholar
  85. [85]
    Baron-Cohen S., The extreme male brain theory of autism, Trends Cogn. Sci., 2002, 6, 248–254PubMedGoogle Scholar
  86. [86]
    Knickmeyer R., Baron-Cohen S., Raggatt P., Taylor K., Hackett G., Fetal testosterone and empathy, Horm. Behav., 2006, 49, 282–292PubMedGoogle Scholar
  87. [87]
    Knickmeyer R., Baron-Cohen S., Fane B.A., Wheelwright S., Mathews G.A., Conway G.S., et al., Androgens and autistic traits: a study of individuals with congenital adrenal hyperplasia, Horm. Behav., 2006, 50, 148–153PubMedGoogle Scholar
  88. [88]
    Hague W.M., Adams J., Rodda C., Brook C.G., De Bruyn R., Grant D.B., et al., The prevalence of polycystic ovaries in patients with congenital adrenal hyperplasia and their close relatives, Clin. Endocrinol., 1990, 33, 501–510Google Scholar
  89. [89]
    Ingudomnukul E., Baron-Cohen S., Wheelwright S., Knickmeyer R., Elevated rates of testosterone-related disorders in women with autism spectrum conditions, Horm. Behav., 2007, 51, 597–604PubMedGoogle Scholar
  90. [90]
    Shayya R., Chang R.J., Reproductive endocrinology of adolescent polycystic ovary syndrome, BJOG, 2010, 117, 150–155PubMedGoogle Scholar
  91. [91]
    Yang F., Li X., Sharma M., Sasaki C.Y., Longo D.L., Lim B., et al., Linking beta-catenin to androgen-signaling pathway, J. Biol. Chem., 2002, 277, 11336–11344PubMedGoogle Scholar
  92. [92]
    Pawlowski J.E., Ertel J.R., Allen M.P., Xu M., Butler C., Wilson E.M., et al., Liganded androgen receptor interaction with beta-catenin: Nuclear co-localization and modulation of transcriptional activity in neuronal cells, J. Biol. Chem., 2002, 277, 20702–20710PubMedGoogle Scholar
  93. [93]
    Cullen D.A., Killick R., Leigh P.N., Gallo J.M., The effect of polyglutamine expansion in the human androgen receptor on its ability to suppress β-catenin-Tcf/Lef dependent transcription, Neurosci. Lett., 2004, 354, 54–58PubMedGoogle Scholar
  94. [94]
    MacLusky N.J., Clark A.S., Naftolin F., Goldman-Rakic P.S., Estrogen formation in the mammalian brain: Possible role of aromatase in sexual differentiation of the hippocampus and neocortex, Steroids, 1987, 50, 459–474PubMedGoogle Scholar
  95. [95]
    Lemmen J.G., Broekhof J.L.M., Kuiper G.G.J.M., Gustafsson J.Å., van der Saag P.T., van der Burg B., Expression of estrogen receptor alpha and beta during mouse embryogenesis, Mech. Dev., 1999, 81, 163–167PubMedGoogle Scholar
  96. [96]
    Forlano P.M., Deitcher D.L., Myers D.A., Bass A.H., Anatomical distribution and cellular basis for high levels of aromatase activity in the brain of teleost fish: Aromatase enzyme and mRNA expression identify glia as source, J. Neurosci., 2001, 21, 8943–8955PubMedGoogle Scholar
  97. [97]
    Wang L., Andersson S., Warner M., Gustafsson J.A., Estrogen receptor (ER)beta knockout mice reveal a role for ERbeta in migration of cortical neurons in the developing brain, Proc. Natl. Acad. Sci. U.S.A., 2003, 100, 703–708PubMedGoogle Scholar
  98. [98]
    Pardridge W.M., Mietus L.J., Transport of steroid hormones through the rat blood-brain barrier, J. Clin. Invest., 1979, 64, 145–154PubMedGoogle Scholar
  99. [99]
    Cardona-Gomez P., Perez M., Avila J., Garcia-Segura L.M., Wandosell F., Estradiol inhibits GSK3 and regulates interaction of estrogen receptors, GSK3, and beta-catenin in the hippocampus, Mol. Cell. Neurosci., 2004, 25, 363–373PubMedGoogle Scholar
  100. [100]
    Perez-Martin M., Azcoitia I., Trejo J.L., Sierra A., Garcia-Segura L.M., An antagonist of estrogen receptors blocks the induction of adult neurogenesis by insulin-like growth factor-I in the dentate gyrus of adult female rat, Eur. J. Neurosci., 2003, 18, 923–930PubMedGoogle Scholar
  101. [101]
    Homburg R., Pariente C., Lunenfeld B., Jacobs H.S., The role of insulin-like growth factor-1 (IGF-1) and IGF binding protein-1 (IGFBP-1) in the pathogenesis of polycystic ovary syndrome, Hum. Reprod., 1992, 7, 1379–1383PubMedGoogle Scholar
  102. [102]
    Kouzmenko A.P., Takeyama K., Ito S., Furatani T., Sawatsubashi S., Maki A., et al., Wnt/β-catenin and estrogen signaling converge in vivo, J. Biol. Chem., 2004, 279, 40255–40258PubMedGoogle Scholar
  103. [103]
    Varea O., Garrido J.J., Dopazo A., Mendex P., Garcia-Segura L.M., Wandosell F., Estradiol activates beta-catenin dependent transcription in neurons, PLoS ONE, 2009, 4, e5153PubMedGoogle Scholar
  104. [104]
    Simoncini T., Hafezi-Mghadam A., Brazil D.P., Ley K., Chin W.W., Liao J.K., Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase, Nature, 2000, 407, 538–541PubMedGoogle Scholar
  105. [105]
    Kuiper G.G., Carlsson B., Grandien K., Enmark E., Häggblad J., Nilsson S., et al., Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta, Endocrinology, 1997, 138, 863–870PubMedGoogle Scholar
  106. [106]
    Martin J.T., Sexual dimorphism in immune function: The role of prenatal exposure to androgens and estrogens, Eur. J. Pharmacol., 2000, 405, 251–261PubMedGoogle Scholar
  107. [107]
    Warren R.P., Odell J.D., Warren W.L., Burger R.A., Maciulis A, Daniels W.W., et al., Brief report: Immunoglobulin A deficiency in a subset of autistic subjects, J. Autism Dev. Disord., 1997, 27, 187–192PubMedGoogle Scholar
  108. [108]
    Gupta S., Aggarwal S., Rashanravan B., Lee T., Th1- and Th2-like cytokines in CD4+ and CD8+ T cells in autism, J. Neuroimmunol., 1998, 85, 106–109PubMedGoogle Scholar
  109. [109]
    Ashwood P., Van de Water J., Is autism an autoimmune disease? Autoimmun. Rev., 2004, 3, 557–562PubMedGoogle Scholar
  110. [110]
    Li X., Chauhan A., Sheikh A.M., Patil S., Chauhan V., Li X.M., et al., Elevated immune response in the brain of autistic patients, J. Neuroimmunol., 2009, 207, 111–116PubMedGoogle Scholar
  111. [111]
    Singh V.K., Phenotypic expression of autoimmune autistic disorder (AAD): A major subset of autism, Ann. Clin. Psychiatry, 2009, 21, 148–161PubMedGoogle Scholar
  112. [112]
    Grether J.K., Croen L.A., Anderson M.C., Nelson K.B., Yolken R.H., Neonatally measured immunoglobulins and risk of autism, Autism Res., 2010, 3, 323–332PubMedGoogle Scholar
  113. [113]
    Angelidou A., Alysandratos K.D., Asadi S., Zhang B., Francis K., Vasiadi M., et al., Brief report: “Allergic symptoms” in children with autism spectrum disorders. More than meets the eye? J. Autism Dev. Disord., (in press), DOI: 10.1007/s10803-010-1171-zGoogle Scholar
  114. [114]
    Chess S., Fernandez P., Korn S., Behavioral consequences of congenital rubella, J. Pediatr., 1978, 93, 699–703PubMedGoogle Scholar
  115. [115]
    Taga T., Fukuda S., Role of IL-6 in the neural stem cell differentiation, Clin. Rev. Allergy Immunol., 2005, 28, 249–256PubMedGoogle Scholar
  116. [116]
    Carpentier P.A., Palmer T.D., Immune influence on adult neural stem cell regulation and function, Neuron, 2009, 64, 79–92PubMedGoogle Scholar
  117. [117]
    Wolf S.A., Steiner B., Wengner A., Lipp M., Kammertoens T., Kempermann G., Adaptive peripheral immune response increases proliferation of neural precursor cells in the adult hippocampus, FASEB J., 2009, 23, 3121–3128PubMedGoogle Scholar
  118. [118]
    Sarkar P., Bergman K., O’Connor T.G., Glover V., Maternal antenatal anxiety and amniotic fluid cortisol and testosterone: Possible implications for foetal programming, J. Neuroendocrinol., 2008, 20, 489–496PubMedGoogle Scholar
  119. [119]
    Pascual R., Ebner D., Araneda R., Urqueta M.J., Bustamante C., Maternal stress induces long-lasting Purkinje cell developmental impairments in mouse offspring, Eur. J. Pediatr., 2010, 169, 1517–1522PubMedGoogle Scholar
  120. [120]
    You J.J., Alter D.A., Stukel T.A., McDonald S.D., Laupacis A., Liu Y., et al., Proliferation of prenatal ultrasound, Can. Med. Assoc. J., 2010, 182, 143–151Google Scholar
  121. [121]
    Miller M.W., Brayman A.A., Abramowicz J.S., Obstetric ultrasonography: a biophysical consideration of patient safety-the “rules” have changed, Am. J. Obstet. Gynecol., 1998, 179, 241–254PubMedGoogle Scholar
  122. [122]
    Sheiner E., Shoham-Vardi I., Abramowicz J.S., What do clinical users know regarding safety of ultrasound during pregnancy? J. Ultrasound Med., 2007, 26, 319–325PubMedGoogle Scholar
  123. [123]
    Williams E.L., Casanova M.F., Potential teratogenic effects of ultrasound on corticogenesis: Implications for autism, Med. Hypotheses, 2010, 75, 53–58PubMedGoogle Scholar
  124. [124]
    Dyson M., Franks C., Suckling J., Stimulation of healing of varicose ulcers by ultrasound, Ultrasonics, 1976, 14, 232–236PubMedGoogle Scholar
  125. [125]
    Duarte L.R., The stimulation of bone growth by ultrasound, Arch. Orthop. Trauma Surg., 1983, 101, 153–159PubMedGoogle Scholar
  126. [126]
    Ang E.S. Jr, Gluncic V., Duque A., Schafer M.E., Rakic P., Prenatal exposure to ultrasound waves impacts neuronal migration in mice, Proc. Natl. Acad. Sci. U.S.A., 2006, 103, 12903–12910PubMedGoogle Scholar
  127. [127]
    Sikov M.R., Effects of ultrasound on development. Part 2: Studies in mammalian species and overview, J. Ultrasound Med., 1986, 5, 651–661PubMedGoogle Scholar
  128. [128]
    Olkku A., Leskinen J.J., Lammi M.J., Hynynen K., Mahonen A., Ultrasound-induced activation of Wnt signaling in human MG-63 osteoblastic cells, Bone, 2010, 47, 320–330PubMedGoogle Scholar
  129. [129]
    Takeuchi R., Ryo A., Komitsu N., Mikuni-Takagaki Y., Fukui A., Takagi Y., et al., Low-intensity pulsed ultrasound activates the phosophatidylinositol 3 kinase/Akt pathway and stimulates the growth of chondrocytes in three-dimensional cultures: A basic science study, Arthritis Res. Ther., 2008, 10, R77PubMedGoogle Scholar
  130. [130]
    Mitragotri S., Blankschtein D., Langer R., Ultrasound-mediated transdermal protein delivery, Science, 1995, 269, 850–853PubMedGoogle Scholar
  131. [131]
    Van Wamel A., Bouakaz A., Versluis M., De Jong N., Micromanipulation of endothelial cells: Ultrasound-microbubble-cell interaction, Ultrasound Med. Biol., 2004, 30, 1255–1258PubMedGoogle Scholar
  132. [132]
    VanBavel E., Effects of shear stress on endothelial cells: Possible relevance for ultrasound applications, Prog. Biophys. Mol. Biol., 2007, 93, 374–383PubMedGoogle Scholar
  133. [133]
    Colombo A., Hall P., Nakamura S., Almagor Y., Maiello L., Martini G., et al., Intracoronary stenting without anticoagulation accomplished with intravascular ultrasound guidance, Circulation, 1995, 91, 1676–1688PubMedGoogle Scholar
  134. [134]
    Rioufol G., Finet G., Ginon I., André-Fouët X., Rossi R., Vialle E., et al., Multiple atherosclerotic plaque rupture in acute coronary syndrome: A three-vessel intravascular ultrasound study, Circulation, 2002, 106, 804–808PubMedGoogle Scholar
  135. [135]
    Yamamoto K., Takahashi T., Asahara T., Ohura N., Sokabe T., Kamiya A., et al., Proliferation, differentiation, and tube formation by endothelial progenitor cells in response to shear stress, J. Appl. Physiol., 2003, 95, 2081–2088PubMedGoogle Scholar
  136. [136]
    Reher P., Doan N., Bradnock B., Meghji S., Harris M., Effect of ultrasound on the production of IL-8, basic FGF and VEGF, Cytokine, 1999, 11, 416–423Google Scholar
  137. [137]
    Reher P., Harris M., Whiteman M., Hai H.K., Meghji S., Ultrasound stimulates nitric oxide and prostaglandin E2 production by human osteoblasts, Bone, 2002, 31, 236–241PubMedGoogle Scholar
  138. [138]
    Raab S., Plate K.H., Different networks, common growth factors: Shared growth factors and receptors of the vascular and the nervous system, Acta Neuropathol., 2007, 113, 607–626PubMedGoogle Scholar
  139. [139]
    Shen Q., Goderie S.K., Jin L., Karanth N., Sun Y., Abramova N., et al., Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells, Science, 2004, 304, 1338–1340PubMedGoogle Scholar
  140. [140]
    Sun J., Zhou W., Ma D., Yang Y., Endothelial cells promote neural stem cell proliferation and differentiation associated with VEGF activated Notch and Pten signaling, Dev. Dyn., 2010, 239, 2345–2353PubMedGoogle Scholar
  141. [141]
    Shen Q., Wang Y., Kokovay E., Lin G., Chuang S.M., Goderie S.K., et al., Adult SVZ stem cells lie in a vascular niche: A quantitative analysis of niche cell-cell interactions, Cell Stem Cell, 2008, 3, 289–300PubMedGoogle Scholar
  142. [142]
    Ye H., Liu J., Wu J.Y., Cell adhesion molecules and their involvement in autism spectrum disorder, Neurosignals, 2011, 18, 62–71Google Scholar
  143. [143]
    Jamain S., Quach H., Betancur C., Råstam M., Colineaux C., Gillberg I.C., et al., Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism, Nat. Genet., 2003, 34, 27–29PubMedGoogle Scholar
  144. [144]
    Laumonnier F., Bonnet-Brilhault F., Gomot M., Blanc R., David A., Moizard M.P., et al., X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family, Am. J. Hum. Genet., 2004, 74, 552–557PubMedGoogle Scholar
  145. [145]
    Feng J., Schroer R., Yan J., Song W., Yang C., Bockholt A, et al., High frequency of neurexin 1beta signal peptide structural variants in patients with autism, Neurosci. Lett., 2006, 409, 10–13PubMedGoogle Scholar
  146. [146]
    Kim H.G., Kishikawa S., Higgins A.W., Seong I.S., Donovan D.J., Shen Y., et al., Disruption of neurexin 1 associated with autism spectrum disorder, Am. J. Hum. Genet., 2008, 82, 199–207PubMedGoogle Scholar
  147. [147]
    Chen S.X., Tari P.K., She K., Haas K., Neurexin-neuroligin cell adhesion complexes contribute to synaptotropic dendritogenesis via growth stabilization mechanisms in vivo, Neuron, 2010, 67, 967–983PubMedGoogle Scholar
  148. [148]
    Chih B., Engelman H., Scheiffele P., Control of excitatory and inhibitory synapse formation by neuroligins, Science, 2005, 307, 1324–1328PubMedGoogle Scholar
  149. [149]
    Budreck E.C., Scheiffele P., Neuroligin-3 is a neuronal adhesion protein at GABAergic and glutamatergic synapses, Eur. J. Neurosci., 2007, 26, 1738–1748PubMedGoogle Scholar
  150. [150]
    Hirao K., Hata Y., Ide N., Takeuchi M., Irie M., Yao I., et al., A novel multiple PDZ domain-containing molecule interacting with N-methyl-D-aspartate receptors and neuronal cell adhesion proteins, J. Biol. Chem., 1998, 273, 21105–21110PubMedGoogle Scholar
  151. [151]
    Barrow S.L., Constable J.R., Clark E., El-Sabeawy F., McAllister A.K., Washbourne P., Neuroligin1: A cell adhesion molecule that recruits PSD-95 and NMDA receptors by distinct mechanisms during synaptogenesis, Neural Dev., 2009, 4, 17PubMedGoogle Scholar
  152. [152]
    Murase S., Mosser E., Schuman E.M., Depolarization drives betacatenin into neuronal spines promoting changes in synaptic structure and function, Neuron, 2002, 35, 91–105PubMedGoogle Scholar
  153. [153]
    Stan A., Pielarski K.N., Brigadski T., Wittenmayer N., Fedorchenko O., Gohla A., et al., Essential cooperation of N-cadherin and neuroligin-1 in the transsynaptic control of vesicle accumulation, Proc. Natl. Acad. Sci. U.S.A., 2010, 107, 11116–11121PubMedGoogle Scholar
  154. [154]
    Yu X., Malenka R.C., β-catenin is critical for dendritic morphogenesis, Nat. Neurosci., 2003, 6, 1169–1177PubMedGoogle Scholar
  155. [155]
    Abe K., Takeichi M., NMDA-receptor activation induces calpainmediated β-catenin cleavages for triggering gene expression, Neuron, 2007, 53, 387–397PubMedGoogle Scholar
  156. [156]
    Derksen M.J., Ward N.L., Hartle K.D., Ivanco T.L., MAP2 and synaptophysin protein expression following motor learning suggests dynamic regulation and distinct alterations coinciding with synaptogenesis, Neurobiol. Learn. Mem., 2007, 87, 404–415PubMedGoogle Scholar
  157. [157]
    Antar L.N., Afroz R., Dictenberg J.B., Carroll R.C., Bassell G.J., Metabotropic glutamate receptor activation regulates fragile X mental retardation protein and Fmr1 mRNA localization differentially in dendrites and at synapses, J. Neurosci., 2004, 24, 2648–2655PubMedGoogle Scholar
  158. [158]
    Wang H., Dictenberg J.B., Ku L., Li W., Bassell G.J., Feng Y., Dynamic association of the fragile X mental retardation protein as a messenger ribonucleoprotein between microtubules and polyribosomes, Mol. Biol. Cell, 2008, 19, 105–114PubMedGoogle Scholar
  159. [159]
    Nimchinsky E.A., Oberlander A.M., Svoboda K., Abnormal development of dendritic spines in FMR1 knock-out mice, J. Neurosci., 2001, 21, 5139–5146PubMedGoogle Scholar
  160. [160]
    Allin E.F., Evolution of the mammalian middle ear, J. Morphol., 1975, 147, 403–437PubMedGoogle Scholar
  161. [161]
    Sakarya O., Armstrong K.A., Adamska M., Adamski M., Wang I.F., Tidor B., et al., A post-synaptic scaffold at the origin of the animal kingdom, PLoS ONE, 2007, 2, e506PubMedGoogle Scholar
  162. [162]
    Nickel M., Evolutionary emergence of synaptic nervous systems: What can we learn from the non-synaptic, nerveless Porifera? Invertebr. Biol., 2010, 129, 1–16Google Scholar
  163. [163]
    Pinto D., Pagnamenta A.T., Klei L., Anney R., Merico D., Regan R., et al., Functional impact of global rare copy number variation in autism spectrum disorders, Nature, 2010, 466, 368–372PubMedGoogle Scholar
  164. [164]
    Kolkova K., Novitskaya V., Pedersen N., Berezin V., Bock E., Neural cell adhesion molecule-stimulated neurite outgrowth depends on activation of protein kinase C and the Ras-mitogen-activated protein kinase pathway, J. Neurosci., 2000, 20, 2238–2246PubMedGoogle Scholar
  165. [165]
    Chang L., Karin M., Mammalian MAP kinase signalling cascades, Nature, 2001, 410, 37–40PubMedGoogle Scholar
  166. [166]
    Laws S.C., Carey S.A., Ferrell J.M., Bodman G.J., Cooper R.L., Estrogenic activity of octylphenol, nonylphenol, bisphenol A and methoxychlor in rats, Toxicol. Sci., 2000, 54, 154–167PubMedGoogle Scholar
  167. [167]
    Hertz-Picciotto I., Delwiche L., The rise in autism and the role of age at diagnosis, Epidemiology, 2009, 20, 84–90PubMedGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2011

Authors and Affiliations

  1. 1.Department of Anatomical Sciences and NeurobiologyUniversity of LouisvilleLouisvilleUSA
  2. 2.Department of Psychiatry and Behavioral SciencesUniversity of LouisvilleLouisvilleUSA

Personalised recommendations