Translational Neuroscience

, Volume 2, Issue 1, pp 61–68 | Cite as

HSV1 in Alzheimer’s disease: Myth or reality?

  • Tea Špeljko
  • David Jutric
  • Goran ŠimićEmail author
Review article


Alzheimer’s disease (AD) is the most frequent cause of dementia in the elderly, characterized by the presence of cerebral amyloid plaques and neurofibrillary tangles. The causes of the disease are not well understood, especially considering that more than 95% of AD patients are non-familial. Due to the similarity of brain regions affected in herpes simplex encephalitis to those mainly affected in AD, and owing to the very high prevalence of latent herpes simplex virus type 1 (HSV1) infection, reactivation of HSV1 was proposed as one of the possible causes of AD. The trigeminal ganglion, located only a few millimeters from the entorhinal cortex, is the primary site of HSV1 latency, although other sites including the sensory neurons, the nodose ganglion of the vagus nerve and other regions of the brain may be involved, possibly in relation to very early neurofibrillary AD changes in the dorsal raphe, locus coeruleus and other brainstem nuclei. Novel data obtained upon infection of cultured neuronal cells and mouse brain with HSV1 further show that HSV1 infection causes intracellular amyloid-beta protein accumulation, as well as abnormal phosphorylation of tau protein, the major component of tangles. Another interesting fact is the existence of a significant degree of homology between HSV1 components and AD susceptibility genes. In this review we summarize findings that reveal connections between the two conditions, as well as different suggestions for the mechanisms of HSV1-induced AD. As most of the available results support a connection of AD and HSV1 infection, antiviral therapy should be taken into consideration for AD treatment following early diagnosis.


Alzheimer’s disease Herpes Simplex Virus Type 1 Apolipoprotein E Antiviral Therapy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ferri C. P., Prince M., Brayne C., Brodaty H., Fratiglioni L., Ganguli M., et al., Global prevalence of dementia: a Delphi consensus study, Lancet, 2005, 366, 2112–2117PubMedCrossRefGoogle Scholar
  2. [2]
    Brickell K. L., Steinbart E. J., Rumbaugh M., Payami H., Schellenberg G. D., Van Deerlin V., et al., Early-onset Alzheimer disease in families with late-onset Alzheimer disease: a potential important subtype of familial Alzheimer disease, Arch Neurol, 2006, 63, 1307–1311PubMedCrossRefGoogle Scholar
  3. [3]
    Bird T. D., Genetic aspects of Alzheimer disease, Genet Med, 2008, 10, 231–239PubMedCrossRefGoogle Scholar
  4. [4]
    Bekris L. M., Yu C. E., Bird T. D., Tsuang D. W., Genetics of Alzheimer disease, J Geriatr Psychiatry Neurol, 2010, 23, 213–227PubMedCrossRefGoogle Scholar
  5. [5]
    Dubois B., Feldman H. H., Jacova C., Dekosky S. T., Barberger-Gateau P., Cummings J., et al., Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria, Lancet Neurol, 2007, 6, 734–746PubMedCrossRefGoogle Scholar
  6. [6]
    Hort J., O’Brien J. T., Gainotti G., Pirttila T., Popescu B. O., Rektorova I., et al., EFNS guidelines for the diagnosis and management of Alzheimer’s disease, Eur J Neurol, 2010, 17, 1236–1248PubMedCrossRefGoogle Scholar
  7. [7]
    Hardy J. A., Higgins G. A., Alzheimer’s disease: the amyloid cascade hypothesis, Science, 1992, 256, 184–185PubMedCrossRefGoogle Scholar
  8. [8]
    Goate A., Chartier-Harlin M. C., Mullan M., Brown J., Crawford F., Fidani L., et al., Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease, Nature, 1991, 349, 704–706PubMedCrossRefGoogle Scholar
  9. [9]
    Hutton M., Lendon C. L., Rizzu P., Baker M., Froelich S., Houlden H., et al., Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17, Nature, 1998, 393, 702–705PubMedCrossRefGoogle Scholar
  10. [10]
    Spillantini M. G., Murrell J. R., Goedert M., Farlow M. R., Klug A., Ghetti B., Mutation in the tau gene in familial multiple system tauopathy with presenile dementia, Proc Natl Acad Sci U S A, 1998, 95, 7737–7741PubMedCrossRefGoogle Scholar
  11. [11]
    Šimić G., Gnjidić M., Kostović I., Cytoskeletal changes as an alternative view on Alzheimer’s disease, Period Biol, 1998, 100, 165–173Google Scholar
  12. [12]
    Braak H., Braak E., Diagnostic criteria for neuropathologic assessment of Alzheimer’s disease, Neurobiol Aging, 1997, 18, S85–88PubMedCrossRefGoogle Scholar
  13. [13]
    Braak H., Del Tredici K., The pathological process underlying Alzheimer’s disease in individuals under thirty, Acta Neuropathol, 2011, 121, 171–181PubMedCrossRefGoogle Scholar
  14. [14]
    Duyckaerts C., Tau pathology in children and young adults: can you still be unconditionally baptist?, Acta Neuropathol, 2011, 121, 145–147PubMedCrossRefGoogle Scholar
  15. [15]
    Mangialasche F., Solomon A., Winblad B., Mecocci P., Kivipelto M., Alzheimer’s disease: clinical trials and drug development, Lancet Neurol, 2010, 9, 702–716PubMedCrossRefGoogle Scholar
  16. [16]
    Bierer P., Conference report: the International Conference on Continuous Renal Replacement Therapies: San Diego, California—November 8–10, 1995, Aust Crit Care, 1996, 9, 17–19PubMedCrossRefGoogle Scholar
  17. [17]
    Braak H., Braak E., Neuropathological stageing of Alzheimer-related changes, Acta Neuropathol, 1991, 82, 239–259PubMedCrossRefGoogle Scholar
  18. [18]
    Grinberg L. T., Rub U., Ferretti R. E., Nitrini R., Farfel J. M., Polichiso L., et al., The dorsal raphe nucleus shows phospho-tau neurofibrillary changes before the transentorhinal region in Alzheimer’s disease. A precocious onset?, Neuropathol Appl Neurobiol, 2009, 35, 406–416PubMedCrossRefGoogle Scholar
  19. [19]
    Šimić G., Stanić G., Mladinov M., Jovanov-Milošević N., Kostović I., Hof P. R., Does Alzheimer’s disease begin in the brainstem?, Neuropathol Appl Neurobiol, 2009, 35, 532–554PubMedCrossRefGoogle Scholar
  20. [20]
    Kapogiannis D., Mattson M. P., Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer’s disease, Lancet Neurol, 2011, 10, 187–198PubMedCrossRefGoogle Scholar
  21. [21]
    Akiyama H., Barger S., Barnum S., Bradt B., Bauer J., Cole G. M., et al., Inflammation and Alzheimer’s disease, Neurobiol Aging, 2000, 21, 383–421PubMedCrossRefGoogle Scholar
  22. [22]
    Mamelak M., Alzheimer’s disease, oxidative stress and mmahydroxybutyrate, Neurobiol Aging, 2007, 28, 1340–1360PubMedCrossRefGoogle Scholar
  23. [23]
    Chayavichitsilp P., Buckwalter J. V., Krakowski A. C., Friedlander S. F., Herpes simplex, Pediatr Rev, 2009, 30, 119–129PubMedCrossRefGoogle Scholar
  24. [24]
    Itzhaki R. F., Wozniak M. A., Herpes simplex virus type 1 in Alzheimer’s disease: the enemy within, J Alzheimers Dis, 2008, 13, 393–405PubMedGoogle Scholar
  25. [25]
    Wagner E. K., Devi-Rao G., Feldman L. T., Dobson A. T., Zhang Y. F., Flanagan W. M., et al., Physical characterization of the herpes simplex virus latency-associated transcript in neurons, J Virol, 1988, 62, 1194–1202PubMedGoogle Scholar
  26. [26]
    Fraser N. W., Lawrence W. C., Wroblewska Z., Gilden D. H., Koprowski H., Herpes simplex type 1 DNA in human brain tissue, Proc Natl Acad Sci U S A, 1981, 78, 6461–6465PubMedCrossRefGoogle Scholar
  27. [27]
    Miller C. S., Danaher R. J., Jacob R. J., Molecular aspects of herpes simplex virus I latency, reactivation, and recurrence, Crit Rev Oral Biol Med, 1998, 9, 541–562PubMedCrossRefGoogle Scholar
  28. [28]
    Gesser R. M., Valyi-Nagy T., Altschuler S. M., Fraser N. W., Oraloesophageal inoculation of mice with herpes simplex virus type 1 causes latent infection of the vagal sensory ganglia (nodose ganglia), J Gen Virol, 1994, 75( Pt 9), 2379–2386PubMedCrossRefGoogle Scholar
  29. [29]
    Baringer J. R., Pisani P., Herpes simplex virus genomes in human nervous system tissue analyzed by polymerase chain reaction, Ann Neurol, 1994, 36, 823–829PubMedCrossRefGoogle Scholar
  30. [30]
    Itzhaki R. F., Wozniak M. A., Herpes simplex virus type 1, apolipoprotein E, and cholesterol: a dangerous liaison in Alzheimer’s disease and other disorders, Prog Lipid Res, 2006, 45, 73–90PubMedCrossRefGoogle Scholar
  31. [31]
    Denaro F. J., Staub P., Colmer J., Freed D. M., Coexistence of Alzheimer disease neuropathology with herpes simplex encephalitis, Cell Mol Biol (Noisy-le-grand), 2003, 49, 1233–1240Google Scholar
  32. [32]
    WuDunn D., Spear P. G., Initial interaction of herpes simplex virus with cells is binding to heparan sulfate, J Virol, 1989, 63, 52–58PubMedGoogle Scholar
  33. [33]
    Krummenacher C., Nicola A. V., Whitbeck J. C., Lou H., Hou W., Lambris J. D., et al., Herpes simplex virus glycoprotein D can bind to poliovirus receptor-related protein 1 or herpesvirus entry mediator, two structurally unrelated mediators of virus entry, J Virol, 1998, 72, 7064–7074PubMedGoogle Scholar
  34. [34]
    Bender F. C., Whitbeck J. C., Ponce de Leon M., Lou H., Eisenberg R. J., Cohen G. H., Specific association of glycoprotein B with lipid rafts during herpes simplex virus entry, J Virol, 2003, 77, 9542–9552PubMedCrossRefGoogle Scholar
  35. [35]
    Pandav R., Dodge H. H., DeKosky S. T., Ganguli M., Blood pressure and cognitive impairment in India and the United States: a crossnational epidemiological study, Arch Neurol, 2003, 60, 1123–1128PubMedCrossRefGoogle Scholar
  36. [36]
    Mufson E. J., Ikonomovic M. D., Styren S. D., Counts S. E., Wuu J., Leurgans S., et al., Preservation of brain nerve growth factor in mild cognitive impairment and Alzheimer disease, Arch Neurol, 2003, 60, 1143–1148PubMedCrossRefGoogle Scholar
  37. [37]
    Hardy J., Alzheimer’s disease: genetic evidence points to a single pathogenesis, Ann Neurol, 2003, 54, 143–144PubMedCrossRefGoogle Scholar
  38. [38]
    Renvoize E. B., Awad I. O., Hambling M. H., A sero-epidemiological study of conventional infectious agents in Alzheimer’s disease, Age Ageing, 1987, 16, 311–314PubMedCrossRefGoogle Scholar
  39. [39]
    Fukumoto H., Tennis M., Locascio J. J., Hyman B. T., Growdon J. H., Irizarry M. C., Age but not diagnosis is the main predictor of plasma amyloid beta-protein levels, Arch Neurol, 2003, 60, 958–964PubMedCrossRefGoogle Scholar
  40. [40]
    Saunders A. M., Schmader K., Breitner J. C., Benson M. D., Brown W. T., Goldfarb L., et al., Apolipoprotein E epsilon 4 allele distributions in late-onset Alzheimer’s disease and in other amyloid-forming diseases, Lancet, 1993, 342, 710–711PubMedCrossRefGoogle Scholar
  41. [41]
    Nathan B. P., Chang K. C., Bellosta S., Brisch E., Ge N., Mahley R. W., et al., The inhibitory effect of apolipoprotein E4 on neurite outgrowth is associated with microtubule depolymerization, J Biol Chem, 1995, 270, 19791–19799PubMedCrossRefGoogle Scholar
  42. [42]
    Poirier J., Minnich A., Davignon J., Apolipoprotein E, synaptic plasticity and Alzheimer’s disease, Ann Med, 1995, 27, 663–670PubMedCrossRefGoogle Scholar
  43. [43]
    Arendt T., Schindler C., Bruckner M. K., Eschrich K., Bigl V., Zedlick D., et al., Plastic neuronal remodeling is impaired in patients with Alzheimer’s disease carrying apolipoprotein epsilon 4 allele, J Neurosci, 1997, 17, 516–529PubMedGoogle Scholar
  44. [44]
    Corder E. H., Robertson K., Lannfelt L., Bogdanovic N., Eggertsen G., Wilkins J., et al., HIV-infected subjects with the E4 allele for APOE have excess dementia and peripheral neuropathy, Nat Med, 1998, 4, 1182–1184PubMedCrossRefGoogle Scholar
  45. [45]
    Isoniemi H., Tenovuo O., Portin R., Himanen L., Kairisto V., Outcome of traumatic brain injury after three decades—relationship to ApoE genotype, J Neurotrauma, 2006, 23, 1600–1608PubMedCrossRefGoogle Scholar
  46. [46]
    Wozniak M. A., Itzhaki R. F., Faragher E. B., James M. W., Ryder S. D., Irving W. L., Apolipoprotein E-epsilon 4 protects against severe liver disease caused by hepatitis C virus, Hepatology, 2002, 36, 456–463PubMedCrossRefGoogle Scholar
  47. [47]
    Itzhaki R. F., Lin W. R., Shang D., Wilcock G. K., Faragher B., Jamieson G. A., Herpes simplex virus type 1 in brain and risk of Alzheimer’s disease, Lancet, 1997, 349, 241–244PubMedCrossRefGoogle Scholar
  48. [48]
    Lin W. R., Wozniak M. A., Esiri M. M., Klenerman P., Itzhaki R. F., Herpes simplex encephalitis: involvement of apolipoprotein E genotype, J Neurol Neurosurg Psychiatry, 2001, 70, 117–119PubMedCrossRefGoogle Scholar
  49. [49]
    Burgos J. S., Ramirez C., Sastre I., Valdivieso F., Effect of apolipoprotein E on the cerebral load of latent herpes simplex virus type 1 DNA, J Virol, 2006, 80, 5383–5387PubMedCrossRefGoogle Scholar
  50. [50]
    Burgos J. S., Ramirez C., Guzman-Sanchez F., Alfaro J. M., Sastre I., Valdivieso F., Hematogenous vertical transmission of herpes simplex virus type 1 in mice, J Virol, 2006, 80, 2823–2831PubMedCrossRefGoogle Scholar
  51. [51]
    Burgos J. S., Ramirez C., Sastre I., Valdivieso F., Apolipoprotein E genotype influences vertical transmission of herpes simplex virus type 1 in a gender specific manner, Aging Cell, 2007, 6, 841–842PubMedCrossRefGoogle Scholar
  52. [52]
    Miller R. M., Federoff H. J., Isoform-specific effects of ApoE on HSV immediate early gene expression and establishment of latency, Neurobiol Aging, 2008, 29, 71–77PubMedCrossRefGoogle Scholar
  53. [53]
    Itzhaki R. F., Lin W. R., Herpes simplex virus type I in brain and the type 4 allele of the apolipoprotein E gene are a combined risk factor for Alzheimer’s disease, Biochem Soc Trans, 1998, 26, 273–277PubMedGoogle Scholar
  54. [54]
    Bullido M. J., Martinez-Garcia A., Artiga M. J., Aldudo J., Sastre I., Gil P., et al., A TAP2 genotype associated with Alzheimer’s disease in APOE4 carriers, Neurobiol Aging, 2007, 28, 519–523PubMedCrossRefGoogle Scholar
  55. [55]
    Itzhaki R. F., Wozniak M. A., Herpes simplex virus type 1, apolipoprotein E, and cholesterol: a dangerous liaison in Alzheimer’s disease and other disorders, Prog Lipid Res, 2006, 45, 73–90PubMedCrossRefGoogle Scholar
  56. [56]
    Hill J. M., Steiner I., Matthews K. E., Trahan S. G., Foster T. P., Ball M. J., Statins lower the risk of developing Alzheimer’s disease by limiting lipid raft endocytosis and decreasing the neuronal spread of Herpes simplex virus type 1, Med Hypotheses, 2005, 64, 53–58PubMedCrossRefGoogle Scholar
  57. [57]
    Wolozin B., Kellman W., Ruosseau P., Celesia G. G., Siegel G., Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors, Arch Neurol, 2000, 57, 1439–1443PubMedCrossRefGoogle Scholar
  58. [58]
    Jamieson G. A., Maitland N. J., Wilcock G. K., Yates C. M., Itzhaki R. F., Herpes simplex virus type 1 DNA is present in specific regions of brain from aged people with and without senile dementia of the Alzheimer type, J Pathol, 1992, 167, 365–368PubMedCrossRefGoogle Scholar
  59. [59]
    Wozniak M. A., Shipley S. J., Combrinck M., Wilcock G. K., Itzhaki R. F., Productive herpes simplex virus in brain of elderly normal subjects and Alzheimer’s disease patients, J Med Virol, 2005, 75, 300–306PubMedCrossRefGoogle Scholar
  60. [60]
    Jamieson G. A., Maitland N. J., Wilcock G. K., Craske J., Itzhaki R. F., Latent herpes simplex virus type 1 in normal and Alzheimer’s disease brains, J Med Virol, 1991, 33, 224–227PubMedCrossRefGoogle Scholar
  61. [61]
    Cheon M. S., Bajo M., Gulesserian T., Cairns N., Lubec G., Evidence for the relation of herpes simplex virus type 1 to Down syndrome and Alzheimer’s disease, Electrophoresis, 2001, 22, 445–448PubMedCrossRefGoogle Scholar
  62. [62]
    Kamal A., Stokin G. B., Yang Z., Xia C. H., Goldstein L. S., Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I, Neuron, 2000, 28, 449–459PubMedCrossRefGoogle Scholar
  63. [63]
    Satpute-Krishnan P., DeGiorgis J. A., Bearer E. L., Fast anterograde transport of herpes simplex virus: role for the amyloid precursor protein of alzheimer’s disease, Aging Cell, 2003, 2, 305–318PubMedCrossRefGoogle Scholar
  64. [64]
    Shipley S. J., Parkin E. T., Itzhaki R. F., Dobson C. B., Herpes simplex virus interferes with amyloid precursor protein processing, BMC Microbiol, 2005, 5, 48PubMedCrossRefGoogle Scholar
  65. [65]
    Wozniak M. A., Itzhaki R. F., Shipley S. J., Dobson C. B. Herpes simplex virus infection causes cellular beta-amyloid accumulation and secretase upregulation. Neurosci Lett, 2007, 429, 95–100PubMedCrossRefGoogle Scholar
  66. [66]
    Piacentini R., Civitelli L., Ripoli C., Marcocci M. E., De Chiara G., Garaci E., et al., HSV-1 promotes Ca(2+)-mediated APP phosphorylation and Abeta accumulation in rat cortical neurons, Neurobiol Aging, 2010, DOI: 10.1016/j.biolaging.2010.06.009Google Scholar
  67. [67]
    Wozniak M. A., Mee A. P., Itzhaki R. F., Herpes simplex virus type 1 DNA is located within Alzheimer’s disease amyloid plaques, J Pathol, 2009, 217, 131–138PubMedCrossRefGoogle Scholar
  68. [68]
    Kammerman E. M., Neumann D. M., Ball M. J., Lukiw W., Hill J. M., Senile plaques in Alzheimer’s diseased brains: possible association of beta-amyloid with herpes simplex virus type 1 (HSV-1) L-particles, Med Hypotheses, 2006, 66, 294–299PubMedCrossRefGoogle Scholar
  69. [69]
    Lukiw W. J., Cui J. G., Yuan L. Y., Bhattacharjee P. S., Corkern M., Clement C., et al., Acyclovir or Abeta42 peptides attenuate HSV-1-induced miRNA-146a levels in human primary brain cells, Neuroreport, 2010, 21, 922–927PubMedCrossRefGoogle Scholar
  70. [70]
    Wozniak M. A., Frost A. L., Itzhaki R. F., Alzheimer’s disease-specific tau phosphorylation is induced by herpes simplex virus type 1, J Alzheimers Dis, 2009, 16, 341–350PubMedGoogle Scholar
  71. [71]
    Ziaie Z., Brinker J. M., Kefalides N. A., Lithium chloride suppresses the synthesis of messenger RNA for infected cell protein-4 and viral deoxyribonucleic acid polymerase in herpes simplex virus-1 infected endothelial cells, Lab Invest, 1994, 70, 29–38PubMedGoogle Scholar
  72. [72]
    Advani S. J., Weichselbaum R. R., Roizman B., The role of cdc2 in the expression of herpes simplex virus genes, Proc Natl Acad Sci U S A, 2000, 97, 10996–11001PubMedCrossRefGoogle Scholar
  73. [73]
    Vincent I., Jicha G., Rosado M., Dickson D. W., Aberrant expression of mitotic cdc2/cyclin B1 kinase in degenerating neurons of Alzheimer’s disease brain, J Neurosci, 1997, 17, 3588–3598PubMedGoogle Scholar
  74. [74]
    Letenneur L., Peres K., Fleury H., Garrigue I., Barberger-Gateau P., Helmer C., et al., Seropositivity to herpes simplex virus antibodies and risk of Alzheimer’s disease: a population-based cohort study, PLoS One, 2008, 3, e3637PubMedCrossRefGoogle Scholar
  75. [75]
    Bullido M. J., Martinez-Garcia A., Tenorio R., Sastre I., Munoz D. G., Frank A., et al., Double stranded RNA activated EIF2 alpha kinase (EIF2AK2; PKR) is associated with Alzheimer’s disease, Neurobiol Aging, 2008, 29, 1160–1166PubMedCrossRefGoogle Scholar
  76. [76]
    Hill J. M., Zhao Y., Clement C., Neumann D. M., Lukiw W. J., HSV-1 infection of human brain cells induces miRNA-146a and Alzheimertype inflammatory signaling, Neuroreport, 2009, 20, 1500–1505PubMedCrossRefGoogle Scholar
  77. [77]
    Carter C. J., Alzheimer’s disease: a pathogenetic autoimmune disorder caused by herpes simplex in a gene-dependent manner, Int J Alzheimers Dis, 2010, 2010, 140539PubMedGoogle Scholar
  78. [78]
    Santana S., Recuero M., Bullido M. J., Valdivieso F., Aldudo J., Herpes simplex virus type I induces the accumulation of intracellular betaamyloid in autophagic compartments and the inhibition of the nonamyloidogenic pathway in human neuroblastoma cells, Neurobiol Aging, 2011Google Scholar
  79. [79]
    Esiri M. M., Biddolph S. C., Morris C. S., Prevalence of Alzheimer plaques in AIDS, J Neurol Neurosurg Psychiatry, 1998, 65, 29–33PubMedCrossRefGoogle Scholar
  80. [80]
    Dhingra V., Li Q., Allison A. B., Stallknecht D. E., Fu Z. F., Proteomic profiling and neurodegeneration in West-Nile-virus-infected neurons, J Biomed Biotechnol, 2005, 2005, 271–279PubMedCrossRefGoogle Scholar
  81. [81]
    Little C. S., Hammond C. J., MacIntyre A., Balin B. J., Appelt D. M., Chlamydia pneumoniae induces Alzheimer-like amyloid plaques in brains of BALB/c mice, Neurobiol Aging, 2004, 25, 419–429PubMedCrossRefGoogle Scholar
  82. [82]
    Renvoize E. B., Awad I. O., Hambling M. H., A sero-epidemiological study of conventional infectious agents in Alzheimer’s disease, Age Ageing, 1987, 16, 311–314PubMedCrossRefGoogle Scholar
  83. [83]
    Wozniak M. A., Shipley S. J., Combrinck M., Wilcock G. K., Itzhaki R. F., Productive herpes simplex virus in brain of elderly normal subjects and Alzheimer’s disease patients, J Med Virol, 2005, 75, 300–306PubMedCrossRefGoogle Scholar
  84. [84]
    Honjo K., van Reekum R., Verhoeff N. P., Alzheimer’s disease and infection: do infectious agents contribute to progression of Alzheimer’s disease?, Alzheimers Dement, 2009, 5, 348–360PubMedCrossRefGoogle Scholar
  85. [85]
    Gerard H. C., Dreses-Werringloer U., Wildt K. S., Deka S., Oszust C., Balin B. J., et al., Chlamydophila (Chlamydia) pneumoniae in the Alzheimer’s brain, FEMS Immunol Med Microbiol, 2006, 48, 355–366PubMedCrossRefGoogle Scholar
  86. [86]
    Balin B. J., Little C. S., Hammond C. J., Appelt D. M., Whittum-Hudson J. A., Gerard H. C., et al., Chlamydophila pneumoniae and the etiology of late-onset Alzheimer’s disease, J Alzheimers Dis, 2008, 13, 371–380PubMedGoogle Scholar
  87. [87]
    Miklossy J., Chronic inflammation and amyloidogenesis in Alzheimer’s disease — role of Spirochetes, J Alzheimers Dis, 2008, 13, 381–391PubMedGoogle Scholar
  88. [88]
    Itzhaki R. F., Wozniak M. A., Alzheimer’s disease and infection: Do infectious agents contribute to progression of Alzheimer’s disease?, Alzheimers Dement, 2010, 6, 83–84; author reply 5PubMedCrossRefGoogle Scholar
  89. [89]
    Wozniak M. A., Itzhaki R. F., Antiviral agents in Alzheimer’s disease: hope for the future?, Ther Adv Neurol Disord, 2010, 3, 141–152PubMedCrossRefGoogle Scholar
  90. [90]
    Lin W. R., Jennings R., Smith T. L., Wozniak M. A., Itzhaki R. F., Vaccination prevents latent HSV1 infection of mouse brain, Neurobiol Aging, 2001, 22, 699–703PubMedCrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2011

Authors and Affiliations

  1. 1.Department of Neuroscience, Croatian Institute for Brain ResearchUniversity of Zagreb Medical SchoolZagrebCroatia

Personalised recommendations