Paladyn

, Volume 1, Issue 2, pp 147–153 | Cite as

Computing networks: A general framework to contrast neural and swarm cognitions

Research Article
  • 47 Downloads

Abstract

This paper presents the Computing Networks (CNs) framework. CNs are used to generalize neural and swarm architectures. Artificial neural networks, ant colony optimization, particle swarm optimization, and realistic biological models are used as examples of instantiations of CNs. The description of these architectures as CNs allows their comparison. Their differences and similarities allow the identification of properties that enable neural and swarm architectures to perform complex computations and exhibit complex cognitive abilities. In this context, the most relevant characteristics of CNs are the existence multiple dynamical and functional scales. The relationship between multiple dynamical and functional scales with adaptation, cognition (of brains and swarms) and computation is discussed.

Keywords

cognition computation neural architecture swarm architecture swarm cognition multiple scales 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. Hölldobler, and E. O. Wilson, The Ants. Belknap Press, 1990.Google Scholar
  2. [2]
    S. Aron, J. L. Deneubourg, S. Goss, and J.M. Pasteels, Functional self-organization illustrated by inter-nest traffic in ants: The case of the argentinian ant. In W. Alt and G. Hoffman, Eds., Biological Motion, volume 89 of Lecture Notes in BioMathematics, 533–547. Springer, Berlin, 1990.Google Scholar
  3. [3]
    Z. Reznikova, Animal Intelligence From Individual to Social Cognition. Cambridge University Press, 2007.Google Scholar
  4. [4]
    B. Ryabko, and Z. Reznikova, The use of ideas of information theory for studying “language” and intelligence in ants. Entropy, 11(4), 836–853, 2009.CrossRefGoogle Scholar
  5. [5]
    E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems. Santa Fe Institute Studies in the Sciences of Complexity. Oxford University Press, New York, 1999.Google Scholar
  6. [6]
    M. Dorigo, and T. Stützle, Ant Colony Optimization. MIT Press, July 2004.Google Scholar
  7. [7]
    M. Dorigo, V. Trianni, E. Sahin, R. Groß, T. H. Labella, G. Baldassarre, S. Nolfi, J.-L. Deneubourg, F. Mondada, D. Floreano, and L. Gambardella. Evolving self-organizing behaviors for a swarm-bot. Autonomous Robots, 17(2–3), 223–245, 2004.CrossRefGoogle Scholar
  8. [8]
    D. R. Chialvo, and M. M. Millonas, How swarms build cognitive maps. In L. Steels, Ed., The biology and technology of intelligent autonomous agents, volume 144, 439–450, 1995.Google Scholar
  9. [9]
    I. D. Couzin, Collective cognition in animal groups. Trends in Cognitive Sciences, 13(1), 36–43, 2009.CrossRefGoogle Scholar
  10. [10]
    J. A. R. Marshall, R. Bogacz, A. Dornhaus, R. Planqué, T. Kovacs, and N. R Franks, On optimal decision-making in brains and social insect colonies. Journal of the Royal Society Interface, 2009.Google Scholar
  11. [11]
    K. M. Passino, T. D. Seeley, and P. Kirk Visscher, Swarm cognition in honey bees. Behavioral Ecology and Sociobiology, 62(3), 401–414, January 2008.CrossRefGoogle Scholar
  12. [12]
    V. Trianni and E. Tuci, Swarm cognition and artificial life. In Advances in Artificial Life. Proceedings of the 10th European Conference on Artificial Life (ECAL 2009), 2009.Google Scholar
  13. [13]
    M. E. J. Newman, The structure and function of complex networks. SIAM Review, 45, 167–256, 2003.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    M. Newman, A. Barabási, and D. J. Watts, Eds., The Structure and Dynamics of Networks. Princeton Studies in Complexity. Princeton University Press, 2006.Google Scholar
  15. [15]
    D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, Eds. Parallel Distributed Processing: Explorations in the Microstructure of Cognition. MIT Press, 1986.Google Scholar
  16. [16]
    J. J. Hopfield, Artificial neural networks. Circuits and Devices Magazine, IEEE, 4(5), 3–10, 1988.CrossRefGoogle Scholar
  17. [17]
    M. Dorigo, V. Maniezzo, and A. Colorni, Positive feedback as a search strategy. Technical Report 91-016, Dipartimento di Elettronica, Politecnico di Milano, 1991.Google Scholar
  18. [18]
    M. Dorigo and C. Blum, Ant colony optimization theory: A survey. Theoretical Computer Science, 44(2–3), 243–278, 2005.CrossRefMathSciNetGoogle Scholar
  19. [19]
    M. Dorigo, Ant colony optimization. Scholarpedia, 2(3), 1461, 2007.CrossRefMathSciNetGoogle Scholar
  20. [20]
    J. Kennedy and R. Eberhart, Particle swarm optimization. In Proceedings of IEEE International Conference on Neural Networks, 1942–1948, Piscataway, NJ, 1995. IEEE Press.Google Scholar
  21. [21]
    J. Kennedy and R. Eberhart, Swarm Intelligence. Morgan Kaufmann, San Francisco, CA, 2001.Google Scholar
  22. [22]
    M. Dorigo, M. A. Montes de Oca, and A. Engelbrecht, Particle swarm optimization. Scholarpedia, 3(11), 1486, 2008.CrossRefGoogle Scholar
  23. [23]
    C. Gershenson. Classification of random Boolean networks. In R. K. Standish, M. A. Bedau, and H. A. Abbass, editors, Artificial Life VIII: Proceedings of the Eight International Conference on Artificial Life, 1–8. MIT Press, 2002.Google Scholar
  24. [24]
    C. Gershenson, Updating schemes in random Boolean networks: Do they really matter? In J. Pollack, M. Bedau, P. Husbands, T. Ikegami, and R. A. Watson, Eds., Artificial Life IX Proceedings of the Ninth International Conference on the Simulation and Synthesis of Living Systems, 238–243. MIT Press, 2004.Google Scholar
  25. [25]
    A. Wuensche, Discrete dynamical networks and their attractor basins. In R. Standish, B. Henry, S. Watt, R. Marks, R. Stocker, D. Green, S. Keen, and T. Bossomaier, Eds., Complex Systems’ 98, 3–21, University of New South Wales, Sydney, Australia, 1998.Google Scholar
  26. [26]
    W. S. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biology, 5(4), 115–133, 1943.MATHMathSciNetGoogle Scholar
  27. [27]
    J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79(8), 2554, 1982.CrossRefMathSciNetGoogle Scholar
  28. [28]
    T. Kohonen, Self-Organizing Maps. Springer, 3rd edition, 2000.Google Scholar
  29. [29]
    S. Garnier, J. Gautrais, and G. Theraulaz, The biological principles of swarm intelligence. Swarm Intelligence, 1(1), 3–31, 2007.CrossRefGoogle Scholar
  30. [30]
    C. W. Reynolds, Flocks, herds, and schools: A distributed behavioral model. Computer Graphics, 21(4), 25–34, 1987.CrossRefMathSciNetGoogle Scholar
  31. [31]
    J. Johnson, Hypernetworks in the Science of Complex Systems, volume 1 of Series on Complexity Science. World Scientific, 2010.Google Scholar
  32. [32]
    E. M. Rauch, M. M. Millonas, and D. R. Chialvo, Pattern formation and functionality in swarm models. Physics Letters A, 207(3–4), 185–193, 1995.MATHCrossRefMathSciNetGoogle Scholar
  33. [33]
    M. Nagy, Z. Akos, D. Biro, and T. Vicsek, Hierarchical group dynamics in pigeon flocks. Nature, 464: 890–893, 2010.CrossRefGoogle Scholar
  34. [34]
    I. D. Couzin, J. Krause, R. James, G. D. Ruxton, and N. R Franks, Collective memory and spatial sorting in animal groups. Journal of Theoretical Biology, 218(1), 1–11, 2002.CrossRefMathSciNetGoogle Scholar
  35. [35]
    W. Fontana, Modelling’ evo-devo’ with RNA. BioEssays, 24(12), 1164–1177, 2002.CrossRefGoogle Scholar
  36. [36]
    A. Munteanu and R. V. Solé, Neutrality and robustness in evodevo: Emergence of lateral inhibition. PLoS Comput Biol, 4(11), e1000226, 2008.CrossRefGoogle Scholar
  37. [37]
    C. Balkenius, J. Zlatev, C. Brezeal, K. Dautenhahn, and H. Kozima, Eds. Proceedings of the First International Workshop on Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems, volume 85, Lund, Sweden, 2001. Lund University Cognitive Studies.Google Scholar
  38. [38]
    H. M. Botee and E. Bonabeau, Evolving ant colony optimization. Advances in Complex Systems, 1, 149–159, 1998.CrossRefGoogle Scholar
  39. [39]
    J. H. Holland, Adaptation in natural and artificial systems. The University of Michigan Press, 1975.Google Scholar
  40. [40]
    J. H. Holland, Hidden Order: How Adaptation Builds Complexity. Helix books. Addison-Wesley, July 1995.Google Scholar
  41. [41]
    Y. Bar-Yam, Multiscale variety in complex systems. Complexity, 9(4), 37–45, 2004.CrossRefMathSciNetGoogle Scholar
  42. [42]
    M. Prokopenko, F. Boschetti, and A. Ryan, An information-theoretic primer on complexity, self-organisation and emergence. Complexity, 15(1), 11–28, 2009.CrossRefMathSciNetGoogle Scholar
  43. [43]
    C. Gershenson, The world as evolving information. In Yaneer Bar-Yam, Ed., Proceedings of International Conference on Complex Systems ICCS2007, 2007.Google Scholar
  44. [44]
    J. von Neumann, The Theory of Self-Reproducing Automata. University of Illinois Press, 1966. Edited by A. W. Burks.Google Scholar
  45. [45]
    S. Wolfram, Theory and Application of Cellular Automata. World Scientific, 1986.Google Scholar
  46. [46]
    A. Wuensche and M. J. Lesser, The Global Dynamics of Cellular Automata; An Atlas of Basin of Attraction Fields of One-Dimensional Cellular Automata. Santa Fe Institute Studies in the Sciences of Complexity. Addison-Wesley, Reading, MA, 1992.Google Scholar
  47. [47]
    S. Wolfram, A New Kind of Science. Wolfram Media, 2002.Google Scholar
  48. [48]
    G. Juárez Martínez, H. V. McIntosh, J. C. Seck Tuoh Mora, and S. V. Chapa Vergara, Rule 110 objects and other collision-based constructions. Journal of Cellular Automata, 2(3), 219–242, 2007.MATHMathSciNetGoogle Scholar
  49. [49]
    M. Cook, Universality in elementary cellular automata. Complex Systems, 15(1), 1–40, 2004.MATHMathSciNetGoogle Scholar
  50. [50]
    H. A. Simon, The Sciences of the Artificial. MIT Press, 3rd edition, 1996.Google Scholar
  51. [51]
    G. Schlosser and G. P. Wagner, Modularity in Development and Evolution. The University of Chicago Press, 2004.Google Scholar
  52. [52]
    W. Callebaut and D. Rasskin-Gutman, Modularity: Understanding the Development and Evolution of Natural Complex Systems. MIT Press, 2005.Google Scholar
  53. [53]
    D. H. Wolpert and W. G. Macready, No free lunch theorems for search. Technical Report SFI-WP-95-02-010, Santa Fe Institute, 1995.Google Scholar
  54. [54]
    D. H. Wolpert and W. G. Macready, No Free Lunch Theorems for Optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82, 1997.CrossRefGoogle Scholar
  55. [55]
    C. Gershenson, Cognitive paradigms: Which one is the best? Cognitive Systems Research, 5(2), 135–156, June 2004.CrossRefGoogle Scholar
  56. [56]
    A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, Series 2, 42:230–265, 1936.MATHCrossRefGoogle Scholar
  57. [57]
    Z. Wang, G. L. Durst, R. C. Eberhart, D. B. Boyd, and Z. B. Miled, Particle swarm optimization and neural network application for qsar. In In HiCOMB, 26–30, 2004.Google Scholar
  58. [58]
    Y. Chen, B. Yang, and J. Dong, Evolving flexible neural networks using ant programming and pso algorithm. Advances in Neural Networks ISNN 2004, 211–216, 2004.Google Scholar
  59. [59]
    C. Blum and K. Socha, Training feed-forward neural networks with ant colony optimization: An application to pattern classification. Hybrid Intelligent Systems, International Conference on, 233–238, 2005.Google Scholar
  60. [60]
    B. Mozafari, A. M. Ranjbar, T. Amraee, M. Mirjafari, and A. R. Shirani, A hybrid of particle swarm and ant colony optimization algorithms for reactive power market simulation. Journal of Intelligent and Fuzzy Systems, 17(6), 557–574, 2006.MATHGoogle Scholar
  61. [61]
    C. Martin and J. Reggia, Self-assembly of neural networks viewed as swarm intelligence. Swarm Intelligence, 4(1), 1–36, 2010.CrossRefGoogle Scholar
  62. [62]
    G. Stahl, Group Cognition: Computer Support for Building Collaborative Knowledge. MIT Press, 2006.Google Scholar
  63. [63]
    C. Gershenson and F. Heylighen, When can we call a system selforganizing? In W Banzhaf, T. Christaller, P. Dittrich, J. T. Kim, and J. Ziegler, editors, Advances in Artificial Life, 7th European Conference, ECAL 2003 LNAI 2801, 606–614, Berlin, 2003. Springer.Google Scholar
  64. [64]
    C. Gershenson, Design and Control of Self-organizing Systems. CopIt Arxives, Mexico, 2007. http://tinyurl.com/DCSOS2007.Google Scholar
  65. [65]
    D. T. Pham, A. Ghanbarzadeh, E. Koc, S. Otri, S. Rahim, and M. Zaidi, The bees algorithm a novel tool for complex optimisation problems. In Intelligent production machines and systems: 2nd I* PROMS Virtual Conference, 3–14 July 2006, page 454. Elsevier Science, 2006.Google Scholar
  66. [66]
    X. Yang, Firefly algorithms for multimodal optimization. In Osamu Watanabe and Thomas Zeugmann, editors, SAGA, volume 5792 of Lecture Notes in Computer Science, 169–178. Springer, 2009.Google Scholar
  67. [67]
    K. N. Krishnanand and D. Ghose, Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions. Swarm Intelligence, 3(2), 87–124, June 2009.CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2010

Authors and Affiliations

  1. 1.Computer Sciences Department Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas Universidad Nacional Autónoma de Mexico Ciudad UniversitariaMexico D.F.Mexico

Personalised recommendations