Advertisement

Mathematica Slovaca

, Volume 62, Issue 5, pp 865–874 | Cite as

Tying up baric algebras

  • Antonio M. Oller-MarcénEmail author
Regular Papers
  • 42 Downloads

Abstract

Given two baric algebras (A 1, ω 1) and (A 2, ω 2) we describe a way to define a new baric algebra structure over the vector space A 1A 2, which we shall denote (A 1A 2, ω 1ω 2). We present some easy properties of this construction and we show that in the commutative and unital case it preserves indecomposability. Algebras of the form A 1A 2 in the associative, coutable-dimensional, zero-characteristic case are classified.

Keywords

baric algebra indecomposable baric algebra 

2010 Mathematics Subject Classification

Primary 17D92 Secondary 17D99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    COSTA, R.— GUZZO, H.: Indecomposable baric algebras, Linear Algebra Appl. 183 (1993), 223–236.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    COSTA, R.— GUZZO, H.: Indecomposable baric algebras II, Linear Algebra Appl. 196 (1994), 233–242.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    ETHERINGTON, I. M. H.: Genetic algebras, Proc. Roy. Soc. Edinburgh 59 (1939), 242–258.MathSciNetGoogle Scholar
  4. [4]
    LÓPEZ-SÁNCHEZ, J.— RODRÍGUEZ SANTA MARÍA, E.: Multibaric algebras. In: Nonassociative Algebra and its Applications (S. González, ed.). Math. Appl. 303, Kluwer Acad. Publ., Dordrecht, 1994, pp. 235–240.Google Scholar
  5. [5]
    REED, M. L.: Algebraic structure of genetic inheritance, Bull. Amer. Math. Soc. (N.S.) 34 (1997), 107–130.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    WORZ-BUSEKROS, A.: Algebras in Genetics. Lecture Notes in Biomath. 36, Springer-Verlag, New York, 1980.CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  1. 1.Centro Universitario de la DefensaAcademia General MilitarZaragozaSpain

Personalised recommendations