Mathematica Slovaca

, Volume 59, Issue 4, pp 433–454 | Cite as

Oscillation criteria for differential equations of second order

Article
  • 27 Downloads

Abstract

In this article, we give sufficient condition in the form of integral inequalities to establish the oscillatory nature of non linear homogeneous differential equations of the form
$$ (r(t)y')' + q(t)y' + p(t)f(y)g(y') = 0, t \geqslant t_0 , $$
where r, q, p, f and g are given data. We do this by separating the two cases f is monotonous and non monotonous.

Keywords

oscillation homogeneous non linear disfocality disconjugacy 

2000 Mathematics Subject Classification

Primary 34C10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    BURTON, T. A.— GRIMER, R.: Stability properties of (ru′)′+ af(u)g(u′) = 0, Monatsh. Math. 74 (1970), 211–222.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    CASSELL, J.S.: The assymptotic behaviour of a class of linear oscillatore, Quart. J. Math. Oxford Ser. (3) 32 (1981), 287–302.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    COPPEL, W.A.: Stability and Asymptotic Behaviour of Differential Equations, Heath, Boston, 1965.Google Scholar
  4. [4]
    EL-SAYED, M.A. An oscillation criterion for a forced second order linear differential equations, Proc. Amer. Math. Soc. 118 (1993), 813–817.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    GRACE, S. R.— LALLI, B. S.: An oscillation criterion for second order strongly sublinear differential equations, J. Math. Anal. Appl. 123 (1987), 584–588.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    GRAEF, J. R.— SPIKES, P. W.: Asymptotic behaviour of solution of a second order nonlinear differential equations, J. Differential Equations 17 (1975), 451–476.CrossRefMathSciNetGoogle Scholar
  7. [7]
    GRAEF, J. R.— SPIKES, P. W.: Boundedness and convergence to zero of solutions of a forced second order nonlinear differential equations, J. Math. Anal. Appl. 62 (1978), 295–309.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    HARDY, G. H.— LITTLEWOOD, J. E.— POLYA, G.: Inequalities, Cambridge University Press, Cambridge, 1988.MATHGoogle Scholar
  9. [9]
    HUANG, C.C.: Oscillation and nonoscillation for second order linear differential equations, J. Math. Anal. Appl. 210 (1997), 712–723.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    KARTSATOUS, A.G.: Maintenance of oscillations under the effect of periodic forcing term, Proc. Amer. Math. Soc. 33 (1972), 377–383.CrossRefMathSciNetGoogle Scholar
  11. [11]
    KEENER, M.S.: Solutions of a certain linear homogeneous second order differential equations, Appl. Anal. 1 (1971), 57–63.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    KONG, Q.: Interval criteria for oscillation of second order linear ordinary differential equations, J. Math. Anal. Appl. 229 (1999), 258–270.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    LALLI, B.S.: On boundedness of solutions of certain second order differential equations, J. Math. Anal. Appl. 25 (1969), 182–188.CrossRefMathSciNetGoogle Scholar
  14. [14]
    LEIGHTON, W.: Comparison theorems for linear differential equations of second order, Proc. Amer. Math. Soc. 13 (1962), 603–610.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    LI, W.T.: Oscillation of certain second-order nonlinear differential equations, J. Math. Anal. Appl. 217 (1998), 1–14.MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    LI, W. T.— AGARWAL, R. P.: Interval oscillation criteria related to integral averaging technique for certain nonlinear differential equations, J. Math. Anal. Appl. 245 (2000), 171–188.MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    LI, W. T.— AGARWAL, R. P.: Interval oscillation criteria for second order nonlinear differential equations with damping, Comput. Math. Appl. 40 (2000), 217–230.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    LI, W. T.— AGARWAL, R. P.: Interval oscillation criteria for a forced nonlinear ordinary differential equations, Appl. Anal. 75 (2000), 341–347.MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    LI, W. T.— AGARWAL, R. P.: Interval oscillation criteria for second order forced nonlinear differential equations with damping, Panamer. Math. J. 11 (2001), 109–117.MATHMathSciNetGoogle Scholar
  20. [20]
    LI, W. T.— ZHANG, M. Y.— FEI, X. L.: Oscillation criteria for a second order nonlinear differential equation with damping term, Indian J. Pure Appl. Math. 30 (1999), 1017–1029.MATHMathSciNetGoogle Scholar
  21. [21]
    PARHI, N.— PANIGRAHI, S.: Disfocality and Liapunov type inequalies for third order equations, Appl. Math. Lett. 16 (2003), 227–233.MATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    RAGOVCHENKO, Y. V.: Oscillation criteria for certain nonlinear differential equations, J. Math. Anal. Appl. 229 (1999), 399–416.CrossRefMathSciNetGoogle Scholar
  23. [23]
    RAINKEIN, S. M.: Oscillation theorems for second order nonhomogeneous linear differential equations, J. Math. Anal. Appl. 53 (1976), 550–553.CrossRefMathSciNetGoogle Scholar
  24. [24]
    SKIDMORE, A.— LEIGHTON, W.: On the equation y″ + p(x)y = f(x), J. Math. Anal. Appl. 43 (1973), 46–55.MATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    SKIDMORE, A.— BOWERS, J. J.: Oscillatory behaviour of solutions of y″ + p(x)y = f(x), J. Math. Anal. Appl. 49 (1975), 317–323.MATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    TEUFEL, H.: Forced second order nonlinear oscillations, J. Math. Anal. Appl. 40 (1972), 148–152.CrossRefMathSciNetGoogle Scholar
  27. [27]
    WONG, J. S.: Oscillation criteria for a forced second order linear differential eqations, J. Math. Anal. Appl. 231 (1999), 235–240.MATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    WONG, J. S.— BURTON, T. A.: Some properties of solution of u″ + a(t)f(u)g(u′) = 0, Monatsh. Math. 69 (1965), 364–374.CrossRefMathSciNetGoogle Scholar
  29. [29]
    UTZ, W. R.: Properties of solutions of u″ + g(t)u 2n−1 = 0, Monatsh. Math. 66 (1962), 56–60.CrossRefMathSciNetGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations