Opto-Electronics Review

, Volume 22, Issue 2, pp 118–126 | Cite as

MOCVD grown MWIR HgCdTe detectors for high operation temperature conditions

  • P. Martyniuk
  • A. Koźniewski
  • A. Kębłowski
  • W. Gawron
  • A. Rogalski
Original Papers
  • 152 Downloads

Abstract

The paper reports on photoelectrical performance of the mid-wave infrared HgCdTe detector for high operating temperature condition. Detector structure was simulated with APSYS numerical platform by Crosslight Inc. The comprehensive analysis of the detector performance such as dark current, detectivity, time response vs. device architecture and applied bias has been performed. The N+pP+n+ HgCdTe heterostructure photodiode operating in room temperature at a wavelength range of 2.6–3.6 μm enabled to reach: detectivity ∼8.7×1010 cmHz1/2/W, responsivity ∼1.72 A/W and time response ∼ 145 ps (V = 200 mV).

Keywords

MWIR SWIR HgCdTe heterostructures HOT detectors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.H. Ettenberg and D. Malchow, “InGaAs SWIR detectors — from military to medical applications”, www.photonicson-line.com.
  2. 2.
    M.P. Hansen and D.S. Malchow, “Overwiew of SWIR detectors, cameras, and applications”, Proc. SPIE 6939, 693901 (2008).CrossRefGoogle Scholar
  3. 3.
    A. Rogalski, Infrared Detectors, CRC Press, Boca Raton, 2011.Google Scholar
  4. 4.
    C. Rafferty, C. King, B. Ackland, J. O’Neil, I. Aberg, T.S. Sriram, A. Mackay, and R. Johnson, “Monolithic germanium SWIR imaging array”, Proc. SPIE 6940, 69400N (2008).CrossRefGoogle Scholar
  5. 5.
    E. Heves, C. Oztruk, V. Ozguz, and Y. Gurbuz, “Solution- -based PbS photodiodes, integrable on ROIC, for SWIR detector applications”, IEEE Electron Device Lett. 34, 5 (2013).CrossRefGoogle Scholar
  6. 6.
    A. Rogalski and R. Ciupa, “InGaAs vs. HgCdTe for short wavelength infrared applications”, Proc. SPIE 3629, 0277–786X1 (1999).Google Scholar
  7. 7.
    J. Kaniewski and J. Piotrowski, “InGaAs for infrared photodetectors. Physics and technology”, Opto-Electron. Rev. 12, 139–148 (2004).Google Scholar
  8. 8.
    P. Norton, “HgCdTe infrared detectors”, Opto-Electron. Rev. 10, 159–174 (2002).Google Scholar
  9. 9.
    J.-S. Kim, S.-Y. An, S.-H. Suh, “Characteristics of SWIR diodes of HgCdTe/CdTe/GaAs grown by metal organic vapor phase epitaxy”, Phys. Stat. Sol. B229, 1089–1092 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    A. Rogalski, “HgCdTe infrared detector materia: history, status and outlook”, Rep. Prog. Phys. 68, 2267–2336 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    L.O. Bubulac, W.E. Tennant, J.G. Pasko, L.J. Kozlowski, M. Zandian, M.E. Motamedi, R.E. DeWames, J. Bajaj, N. Nayar, W.V. McLevige, N.S. Gluck, R. Melendes, and D.E. Cooper, “High performance SWIR HgCdTe Detector Arrays”, J. Electron. Mater. 26, (1997).Google Scholar
  12. 12.
    T. Ashley and C.T. Elliott, “Non-equilibrium mode of operation for infrared detection”, Electron. Lett. 21, 451–452 (1985).ADSCrossRefGoogle Scholar
  13. 13.
    C.T. Elliott, “Non-equilibrium mode of operation of narrow-gap semiconductor devices”, Semicond. Sci. Technol. 5, S30–S37 (1990).ADSCrossRefGoogle Scholar
  14. 14.
    J. Piotrowski and A. Rogalski, High-Operating Temperature Infrared Photodetectors, SPIE Press, Bellingham, 2007.CrossRefGoogle Scholar
  15. 15.
    C. T. Elliot, C. T. Gordon, R. S. Hall, T. J. Philips, A. M. White, C. L. Jones, C. D. Maxey, N. E. Metcalfe, “Recent results on MOVPE grown heterostructure devices”, J. Electron. Mater. 25, 1139–1145 (1996).ADSCrossRefGoogle Scholar
  16. 16.
    J. Piotrowski, W. Gawron, Z. Orman, J. Pawluczyk, K. KŁos, D. Stępień, and A. Piotrowski, “Dark currents, responsivity and response time in graded gap HgCdTe structures”, Proc. SPIE 7660, 766031 (2010).CrossRefGoogle Scholar
  17. 17.
    A. Piotrowski, P. Madejczyk, W. Gawron, K. KŁos, J. Paw- luczyk, J. Rutkowski, J. Piotrowski, and A. Rogalski, “Progress in MOCVD growth of HgCdTe heterostructures for uncooled infrared photodetectors”, Infrared Phys. & Technol. 49, 173–182 (2007).ADSCrossRefGoogle Scholar
  18. 18.
    R.K. Bhan and V. Dhar, “Carrier density approximation for non-parabolic and highly degenerate HgCdTe semiconductors”, Semicond. Sci. Technol. 19, 413–416 (2003).ADSCrossRefGoogle Scholar
  19. 19.
    S. Gupta, R.K. Bhan, and V. Dhar, “Unified carrier density approximation for non-parabolic and highly degenerate HgCdTe semiconductors covering SWIR, MWIR and LWIR bands”, Infrared Phys. & Technol. 51, 259–262 (2008).ADSCrossRefGoogle Scholar
  20. 20.
    Z.J. Quan, G.B. Chen, L.Z. Sun, Z.H. Ye, Z.F. Li, and W. Lu, “Effects of carrier degeneracy and conduction band non- -parabolicity on the simulation of HgCdTe photovoltaic devices”, Infrared Phys. & Technol. 50, 1–8 (2007).ADSCrossRefGoogle Scholar
  21. 21.
    J. Wang, X.S. Chen, Z.Q. Wang, W.D. Hu, W. Lu, and F.Q. Xu, “The mechanism of the photoresponse blueshifts for the n-type conversion region of n+-on-p Hg0.722Cd0.278Te infrared photodiode”, J. Appl. Phys. 107, 044513 (2010).ADSCrossRefGoogle Scholar
  22. 22.
    J. Wang, X. Chen, W. Hu, L. Wang, Y. Chen, W. Lu, and F. Xu, “Different approximation for carrier statistic in non-parabolic MWIR HgCdTe photovoltaic devices”, Proc. SPIE 8012, 80123B (2011).ADSCrossRefGoogle Scholar
  23. 23.
    Z.J. Quan, X.S. Chen, W.D. Hu, Z.H. Ye, X.N. Hu, Z.F. Li, and W. Lu, “Modelling of dark characteristics for long-wavelength HgCdTe photodiode”, Opt. Quant Electron. 38, 1107–1113 (2007).CrossRefGoogle Scholar
  24. 24.
    J. Wenus, J. Rutkowski, and A. Rogalski, “Two-dimensional analysis of double-layer heterojunction HgCdTe Photodiodes”, IEEE Trans. Electron. Devices 48, 7 (2001).CrossRefGoogle Scholar
  25. 25.
    APSYS Macro/User’s Manual ver. 2011. Crosslight Software, Inc. (2011).Google Scholar
  26. 26.
    T.N. Casselman and P.E. Petersen, “A comparison of the dominant Auger transitions in p-type (HgCd)Te”, Solid State Commun. 33, 615–619 (1980).ADSCrossRefGoogle Scholar
  27. 27.
    G.A. Hurkx, D.B. M. Klaassen, and M.P.G. Knuvers, “A new recombination model for device simulation including tunnelling”, IEEE Trans. Electron. Devices 39, 2 (1992).Google Scholar
  28. 28.
    G.L. Hansen, J.L. Schmidt, and T.N. Casselman, “Energy gap vs. alloy composition and temperature in Hg1−xCdxTe”, J. Appl.Phys. 53, 7099 (1982).ADSCrossRefGoogle Scholar
  29. 29.
    W. Scott, “Electron Mobility in Hg1−xCdxTe”, J. Appl. Phys. 43, 1055 (1972).ADSCrossRefGoogle Scholar
  30. 30.
    W.W. Anderson, “Absorption constant of Pb1−xSnxTe and Hg1−xCdxTe alloys”, Infrared Phys. & Technol. 20, 363 (1980).ADSCrossRefGoogle Scholar
  31. 31.
    Q. Li and R.W. Dutton, “Numerical small-signal AC modeling of deep-level-trap related frequency-dependent output conductance and capacitance for GaAs MESFET’s on semi- -insulating substrates”, IEEE Trans. Electron. Devices 38, 1285–1288 (1991).ADSCrossRefGoogle Scholar
  32. 32.
    E. Finkman and S.E. Schacham, “The exponential optical absorption band tail of Hg1−xCdxTe”, J. Appl. Phys. 56, 10 (1984).CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2014

Authors and Affiliations

  • P. Martyniuk
    • 1
  • A. Koźniewski
    • 2
  • A. Kębłowski
    • 2
  • W. Gawron
    • 1
  • A. Rogalski
    • 1
  1. 1.Institute of Applied PhysicsMilitary University of TechnologyWarsawPoland
  2. 2.Vigo System S.A.Ożarów MazowieckiPoland

Personalised recommendations