Advertisement

Opto-Electronics Review

, Volume 21, Issue 2, pp 153–181 | Cite as

Review of night vision technology

  • K. Chrzanowski
Invited Paper

Abstract

Night vision based on technology of image intensifier tubes is the oldest electro-optical surveillance technology. However, it receives much less attention from international scientific community than thermal imagers or visible/NIR imagers due to series of reasons. This paper presents a review of a modern night vision technology and can help readers to understand sophisticated situation on the international night vision market.

Keywords

night vision technology image intensifier tubes 

List of abbreviations

ANVIS

aviator night vision imaging system (a term used commonly for binocular night vision goggles)

CCD

charge couple device (a technology for constructing integrated circuits that use a movement of electrical charge by “shifting” signals between stages within the device one at a time)

CCTV

close circuit television (type of visible/NIR cameras used for short range surveillance)

CMOS

complementary metal-oxide-semiconductor (a technology that uses pairs of p-type and n-type metal oxide semiconductor field effect transistors for constructing image sensors

CRT

cathode ray tube (a vacuum tube containing an electron gun and a phosphor screen used to generate images)

EMCCD

electron multiplying charge coupled device

fc

foot candela

fL

foot lambert

ENVG

enhanced night vision goggles

EBAPS

electron bombarded active pixel sensor

FOM

figure of merit

FOV

field of view

HUD

head-up display

ICCD

intensified CCD (a technology that uses imaging modules achieved by combing image intensifier tube with CCD sensor)

IIT

image intensifier tube

lp/mm

line pair per millimeter

lp/mrad

line per miliradian

MCP

micro channel plate

MIL standard

a United States defence standard, often called a military standard

NIR

near infrared

NVD

night vision device

NVG

night vision goggles

RMS

root mean square

SNR

signal to noise ratio

SWIR

short wave infrared

TFT LCD

thin film transistor liquid crystal display

References

  1. 1.
    A. Rogalski, “History of infrared detectors”, Opto-Electron. Rev. 20, 279–308 (2012).ADSCrossRefGoogle Scholar
  2. 2.
  3. 3.
    International military catalogue — Night vision products, ITT Night Vision, 2010Google Scholar
  4. 4.
  5. 5.
  6. 6.
  7. 7.
  8. 8.
    The Avionics Handbook, edited by Cary R. Spitzer, Boca Raton, 2001.Google Scholar
  9. 9.
  10. 10.
  11. 11.
    Image Intensifiers catalogue no. TII 0004E02 IP, Hamamatsu Photonics K.K, 2009Google Scholar
  12. 12.
  13. 13.
  14. 14.
  15. 15.
  16. 16.
    L. Bosch, “Tube performance that matters”, Proc. SPIE 4128, 65–78, (2000).ADSCrossRefGoogle Scholar
  17. 17.
    MIL-I-49453 CR, Image intensifier assembly, 18 millimiter microchannel wafer, MX 10130/UV, 1989Google Scholar
  18. 18.
  19. 19.
  20. 20.
    Introduction to scientific imaging, Roper Scientific Inc., 2002Google Scholar
  21. 21.
  22. 22.
  23. 23.
  24. 24.
  25. 25.
  26. 26.
  27. 27.
    H. L. Task, Night vision devices and characteristics, Amstrong Laboratory Report ASC, 91-2961 (1992).Google Scholar
  28. 28.
  29. 29.
    MIL-STD-3009, Lighting, Aircraft, Night Vision Imaging System (NVIS) Compatible, 2001.Google Scholar
  30. 30.
  31. 31.
  32. 32.
    MIL-G-49313CR, Goggles — night vision AN/PVS-7B, 1989Google Scholar
  33. 33.
    MIL-A-49425(CR), Aviator’s night vision imaging system AN/AVS-6, 1989Google Scholar
  34. 34.
    MIL-PRF-49082E, PERFORMANCE SPECIFICATION VIEWER,DRIVER’S, NIGHT VISION, AN/VVS-2(V, 1999Google Scholar
  35. 35.
    MIL-PRF-49063E, NIGHT VISION SIGHT, INDIVIDUAL SERVED WEAPON AN/PVS-4, 1999.Google Scholar
  36. 36.
    MIL-PRF-49065F, NIGHT VISION GOGGLES, AN/PVS-5, 1999.Google Scholar
  37. 37.
    MIL STD 1858, Image intensifier assemblies, performance parameters of, 1983.Google Scholar
  38. 38.
    MIL-PRF-49052G “Image intensifier assembly, 18 millimiter microchannel wafer, MX-9916/UV, 1999.Google Scholar
  39. 39.
    MIL-PRF-49428 “Image intensifier assembly, 18 millimiter microchannel wafer, MX-10160/AVS-6, 1995.Google Scholar
  40. 40.
    MIL-STD-1858, Image intensifier assemblies, performance parameters of; 1981Google Scholar
  41. 41.
    MIL-I-49453 CR, Image intensifier assembly, 18 millimiter microchannel wafer, MX 10130/UV, 1989Google Scholar
  42. 42.
    GOST 21815.0-86-GOST 21815.17-86 Image intensifier tubes — Measurement methods of optical and photometric parameters, 1987 (in Russian).Google Scholar
  43. 43.
    Stanag no. 4348, Definition of nominal static range performance for image intensifier systems, 1988 (annulled in 1996).Google Scholar
  44. 44.
    STANAG No. 4351, Measurement of the minimum resolvable contrast (MRC) of image intensifiers, 1987 (annulled in 1996).Google Scholar
  45. 45.
    Tender Enquiry No 2/Tech/2007(1)-for Night Vision Device, Ministry of Home Affairs Government of India.Google Scholar
  46. 46.
    Request for Proposal (RFP) No: PC-28706/ACSFP/PNVB/A/ARTY dated 01 Dec 10., GOC-in-C, Northern Command, C/o 56 APO, India.Google Scholar
  47. 47.
    Global tender inquiry no TE No. U.II. 871/2010-11-PROC-IV dated the 02 August, 2010, India.Google Scholar
  48. 48.
    International Traffic in Arms (ITAR) per title 22, Code of Federal Regulations (CFR), Parts 120-130.Google Scholar
  49. 49.
    EC Regulation No WE 428/2009: Community regime for the control of exports, transfer, brokering and transit of dual-use items.Google Scholar
  50. 50.
    Addendum to GEN-09-ASAM-01, Aviation Safety Action Message, Updated Night Vision Device (NVD) Maintenance, 151130Z OCT 09, 2009.Google Scholar
  51. 51.
  52. 52.
  53. 53.
    K. Chrzanowski, “Present status of night vision metrology”, OPTRO 5th Int. Symp. on Optronics in Defence and Security, Paris, 2012.Google Scholar
  54. 54.
  55. 55.
  56. 56.
  57. 57.
  58. 58.
  59. 59.
  60. 60.
  61. 61.
  62. 62.
  63. 63.
  64. 64.
    C.V. Driessche, F. Coursaget and F. Berthault, “IR-CMOS fusion for night vision”, 5th Int. Symp. on Optronics in Defense and Security, Paris, 2012.Google Scholar
  65. 65.
  66. 66.
  67. 67.
  68. 68.
  69. 69.
  70. 70.
  71. 71.
  72. 72.
  73. 73.
  74. 74.
    S. May, S. Fuchs, D. Droeschel, D. Holz, and A. Nuchter, “Robust 3D-mapping with time-of-flight cameras”, IEEE/ RSJ Int. Conf. on Intelligent Robots and Systems, St. Luis, 2009.Google Scholar
  75. 75.
  76. 76.
    J.L. Craig and H.L. Task, “Development and evaluation of the panoramic night vision goggle”, Air Force Research Laboratory Human Effectiveness Directorate, Report DTIC no. ADA400115, 1999.Google Scholar
  77. 77.
    Peter L. Marasco and H.L. Task, “Optical characterization of wide field-of-view night vision devices”, Air Force Research Laboratory Human Effectiveness Directorate, Report DTIC no ADA430272, 1999.Google Scholar
  78. 78.
    Eric E. Geiselman and Jeffrey L. Craig, “Panoramic Night vision goggle update”, Air Force Research Laboratory Human Effectiveness Directorate, Report DTIC no ADA430243, 1998.Google Scholar
  79. 79.
  80. 80.
  81. 81.
  82. 82.
  83. 83.

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Institute of OptoelectronicsMilitary University of TechnologyWarsawPoland
  2. 2.InframetKwirynówPoland

Personalised recommendations