Opto-Electronics Review

, Volume 19, Issue 2, pp 137–139 | Cite as

Above GaSb barrier in type II quantum well structures for mid-infrared emission detected by Fourier-transformed modulated reflectivity

  • M. Motyka
  • F. Janiak
  • K. Ryczko
  • G. Sęk
  • J. Misiewicz
  • A. Bauer
  • R. Weih
  • S. Höfling
  • M. Kamp
  • A. Forchel
Article
  • 76 Downloads

Abstract

Modulation spectroscopy in its Fourier-transformed mode has been employed to investigate the optical properties of broken gap ‘W’-shaped GaSb/AlSb/InAs/InGaSb/InAs/AlSb/GaSb quantum well structures designed to emit in the mid infrared range of 3–4 μm for applications in laser-based gas sensing. Besides the optical transitions originating from the confined states in the type II quantum wells, a number of spectral features at the energy above the GaSb band gap have been detected. They have been analyzed in a function of InAs and GaSb layer widths and ultimately connected with resonant states in the range of AlSb tunneling barriers.

Keywords

Fourier-transformed photoreflectance type II quantum well mid-infrared resonant states 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.R. Meyer, C.A. Hoffman, F.J. Bartoli, and L.R. Ram-Mohan, “Type-II quantum-well lasers for the mid-wave-length infrared”, Appl. Phys. Lett. 67, 757–160 (1995).CrossRefADSGoogle Scholar
  2. 2.
    R.Q. Yang, “Infrared laser based on intersubband transitions in quantum wells”, Superlattice Microst. 17, 77–83 (1995).CrossRefADSGoogle Scholar
  3. 3.
    M. Kim, C.L. Canedy, C.S. Kim, W.W. Bewley, J.R. Lindle, J. Abell, I. Vurgaftman, and J.R. Meyer, “Room temperature interband cascade lasers”, Physics Procedia 3, 1195 (2010).CrossRefGoogle Scholar
  4. 4.
    A. Bauer, F. Langer, M. Dallner, M. Kamp, M. Motyka, G. Sęk, K. Ryczko, J. Misiewicz, S. Höfling, and A. Forchel, “Emission wavelength tuning of interband cascade lasers in the 3–4-μm spectral range”, Appl. Phys. Lett. 95, 251103 (2009).CrossRefADSGoogle Scholar
  5. 5.
    M. Motyka, G. Sęk, K. Ryczko, J. Misiewicz, T. Lehnhardt, S. Höfling, and A. Forchel, “Optical properties of GaSb-based type II quantum wells as the active region of midinfrared interband cascade lasers for gas sensing applications”, Appl. Phys. Lett. 94, 251901 (2009).CrossRefADSGoogle Scholar
  6. 6.
    M. Motyka, G. Sęk, J. Misiewicz, A. Bauer, M. Dallner, S. Höfling, and A. Forchel, “Fourier transformed photoreflectance and photoluminescence of mid infrared GaSb-based type II quantum wells”, Appl. Phys. Express 2, 126505 (2009).CrossRefADSGoogle Scholar
  7. 7.
    M. Motyka and J. Misiewicz, “Fast differential reflectance spectroscopy of semiconductor structures for infrared applications by using Fourier transform spectrometer”, Appl. Phys. Express 3, 112401 (2010)CrossRefADSGoogle Scholar
  8. 8.
    M. Utko, G. Sęk, K. Ryczko, L. Bryja, J. Misiewicz, M. Bayer, J. Koeth, and A. Forchel, “Optical investigations of the above barrier state transitions in GaAs/Al0.3Ga0.7As double quantum wells”, Mater. Sci. Eng. C19, 167–169 (2002).Google Scholar
  9. 9.
    R.M. Cohen, M. Kitamura, and Z.M. Fang, “Surface quan- tum wells”, Appl. Phys. Lett. 50, 1675 (1987).CrossRefADSGoogle Scholar
  10. 10.
    M. Motyka, M. Syperek, R. Kudrawiec, J. Misiewicz, M. Rudziński, P. Hageman, and P.K. Larsen, “Investigations of GaN surface quantum well by contactless electroreflectance spectroscopy”, Appl. Phys. Lett. 89, 231912 (2006).CrossRefADSGoogle Scholar
  11. 11.
    Y. Koshimoto, Y. Shirakai, and S. Fukatsu, “Gas-source mo- lecular beam epitaxial growth of SiGe alloy-based ‘naked’ quantum wells”, Thin Solid Films 321, 81 (1998).CrossRefADSGoogle Scholar
  12. 12.
    V. Bogatu, A. Goldenblum, A. Many, and Y. Goldstein, “Surface quantum wells in hydrogen implanted ZnO”, Phys. Status Solidi B212, 89 (1999).CrossRefADSGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2011

Authors and Affiliations

  • M. Motyka
    • 1
  • F. Janiak
    • 1
  • K. Ryczko
    • 1
  • G. Sęk
    • 1
  • J. Misiewicz
    • 1
  • A. Bauer
    • 2
  • R. Weih
    • 2
  • S. Höfling
    • 2
  • M. Kamp
    • 2
  • A. Forchel
    • 2
  1. 1.Institute of PhysicsWrocław University of TechnologyWrocławPoland
  2. 2.Technische PhysikUniversity of Würzburg, Wilhelm-Conrad-Rötgen-Research Center for Complex Material Systems, Am HublandWürzburgGermany

Personalised recommendations