Advertisement

Opto-Electronics Review

, Volume 18, Issue 4, pp 446–457 | Cite as

Sensitivity of imaging properties of metal-dielectric layered flat lens to fabrication inaccuracies

  • R. Kotyński
  • H. Baghdasaryan
  • T. Stefaniuk
  • A. Pastuszczak
  • M. Marciniak
  • A. Lavrinenko
  • K. Panajotov
  • T. Szoplik
Nanophotonics
  • 64 Downloads

Abstract

We characterize the sensitivity of imaging properties of a layered silver-TiO2 flat lens to fabrication inaccuracies. The lens is designed for approximately diffraction-free imaging with subwavelength resolution at distances in the order of a wavelength. Its operation may be attributed to self-collimation with a secondary role of Fabry-Perot resonant transmission, even though the first order effective medium description of the structure is inaccurate. Super-resolution is maintained for a broad range of overall thicknesses and the total thickness of the multilayer is limited by absorption. The tolerance analysis indicates that the resolution and transmission efficiency are highly sensitive to small changes of layer thicknesses.

Keywords

plasmonics nanophotonics nanolenses, super-resolution metal-dielectric multilayers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.B. Pendry, “Negative refraction makes a perfect lens”, Phys. Rev. Lett. 85, 3966–3969 (2000).CrossRefADSGoogle Scholar
  2. 2.
    N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens”, Science 308, 534–537 (2005).CrossRefADSGoogle Scholar
  3. 3.
    D.O.S. Melville and R.J. Blaikie, “Super-resolution imaging through a planar silver layer”, Opt. Express 13, 2127–2134 (2005).CrossRefADSGoogle Scholar
  4. 4.
    Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens”, Nano Lett. 7, 403–408 (2007).CrossRefADSGoogle Scholar
  5. 5.
    P. Wróbel, J. Pniewski, T.J. Antosiewicz, and T. Szoplik, “Focusing radially polarized light by concentrically corrugated silver film without a hole”, Phys. Rev. Lett. 102, 183902 (2009).CrossRefADSGoogle Scholar
  6. 6.
    Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging”, Opt. Express 15, 6947–6954 (2007).CrossRefADSGoogle Scholar
  7. 7.
    Y. Xiong, Z. Liu, S. Durant, H. Lee, C. Sun, and X. Zhang, “Tuning the far-field superlens: from UV to visible”, Opt. Express 15, 7095–7102 (2007).CrossRefADSGoogle Scholar
  8. 8.
    E.A. Ray, M.J. Hampton, and R. Lopez, “Simple demonstration of visible evanescent-wave enhancement with far-field detection”, Opt. Lett. 34, 2048–2050 (2009).CrossRefADSGoogle Scholar
  9. 9.
    B. Wood, J.B. Pendry, and D.P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system”, Phys. Rev. B74, 115116 (2006).ADSGoogle Scholar
  10. 10.
    D.O.S. Melville and R.J. Blaikie, “Experimental comparison of resolution and pattern fidelity in single- and double-layer planar lens lithography”, J. Opt. Soc. Am. B23, 461–467 (2006).ADSGoogle Scholar
  11. 11.
    M. Scalora, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, D. Ceglia, M. Centini, A. Mandatori, C. Sibilia, N. Akozbek, M.G. Cappeddu, M. Fowler, and J. Haus, “Negative refraction and sub-wavelength focusing in the visible range using transparent metallo-dielectric stacks”, Opt. Express 15, 508–523 (2007).CrossRefADSGoogle Scholar
  12. 12.
    X. Li, S. He, and Y. Jin, “Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies”, Phys. Rev. B75, 045103 (2007).ADSGoogle Scholar
  13. 13.
    D. de Ceglia, M.A. Vincenti, M.G. Cappeddu, M. Centini, N. Akozbek, A. DOrazio, J. Haus, M.J. Bloemer, and M. Scalora, “Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-IR ranges”, Phys. Rev. A77, 033848 (2008).ADSGoogle Scholar
  14. 14.
    M. Conforti, M. Guasoni, and C. De Angelis, “Subwavelength diffraction management”, Opt. Lett. 33, 2662–2664 (2008).CrossRefADSGoogle Scholar
  15. 15.
    C.P. Moore, M.D. Arnold, P.J. Bones, and R.J. Blaikie, “Analysis and comparison of simulation techniques for silver superlenses”, Proc. Int. Conf. Nanoscience and Nanotechnology, ICONN 2008, 210–213 (2008).Google Scholar
  16. 16.
    C.P. Moore, M.D. Arnold, P.J. Bones, and R.J. Blaikie, “Image fidelity for single-layer and multi-layer silver superlenses”, J. Opt. Soc. Am. A25, 911–918 (2008).CrossRefADSGoogle Scholar
  17. 17.
    C.P. Moore, R.J. Blaikie, and M.D. Arnold, “An improved transfer-matrix model for optical superlenses”, Opt. Express 17, 14260–14269 (2009).CrossRefADSGoogle Scholar
  18. 18.
    R. Kotynski and T. Stefaniuk, “Comparison of imaging with sub-wavelength resolution in the canalization and resonant tunnelling regimes”, J. Opt. A-Pure Appl. Op. 11, 015001 (2009).CrossRefADSGoogle Scholar
  19. 19.
    N. Mattiucci, G. D’Aguanno, M. Scalora, M.J. Bloemer, and C. Sibilia, “Transmission function properties for multi-layered structures: Application to superresolution”, Opt. Express 17, 17517–17529 (2009).CrossRefADSGoogle Scholar
  20. 20.
    Q.M. Quan, S.L. Zhu, and R.P. Wang, “Refraction in the fixed direction at the surface of dielectric/silver superlattice”, Phys. Lett. A359, 547–549 (2006).ADSGoogle Scholar
  21. 21.
    X. Li and F. Zhuang, “Multilayered structures with high subwavelength resolution based on the metal-dielectric composites”, J. Opt. Soc. Am. A26, 2521–2525 (2009).CrossRefGoogle Scholar
  22. 22.
    R. Kotyński and T. Stefaniuk, “Multiscale analysis of subwavelength imaging with metal-dielectric multilayers”, Opt. Lett. 35, 1133–1135 (2010).CrossRefGoogle Scholar
  23. 23.
    R. Kotyński, T. Stefaniuk, and A. Pastuszczak, “Sub-wavelength diffraction-free imaging with low-loss metal-dielectric multilayers”, ArXiv:1002.0658. (submitted to J. Appl. Phys. A, 2010)Google Scholar
  24. 24.
    P.A. Belov, C. Simovski, and P. Ikonen, “Canalization of subwavelength images by electro-magnetic crystals”, Phys. Rev. B71, 193105 (2005).ADSGoogle Scholar
  25. 25.
    P.A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime”, Phys. Rev. B73, 113110 (2006).ADSGoogle Scholar
  26. 26.
    M.A. Vincenti, A. D’Orazio, M.G. Cappeddu, N. Akozbek, M.J. Bloemer, and M. Scalora, “Semiconductor-based superlens for subwavelength resolution below the diffraction limit at extreme ultraviolet frequencies”, J. Appl. Phys. 105, 103103 (2009).CrossRefADSGoogle Scholar
  27. 27.
    J.W. Goodman, Introduction to Fourier Optics, Roberts & Co Publ., 3rd ed., 2005.Google Scholar
  28. 28.
    B. Saleh and M. Teich, Fundamentals of Photonics, John Wiley & Sons, Inc, 2nd ed., 2007.Google Scholar
  29. 29.
    R. Kotyński, “Fourier optics approach to imaging with sub-wavelength resolution through metal-dielectric multilayers”, Opto-Electron. Rev. 18, 366–375 (2010), (in press, arXiv 1006.3669).CrossRefGoogle Scholar
  30. 30.
    A. Taflove and S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artec House Inc., Boston, 2nd ed., 2000.zbMATHGoogle Scholar
  31. 31.
    A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J.D. Joannopoulos, S.G. Johnson, and G. Burr, “Improving accuracy by subpixel smoothing in FDTD”, Opt. Lett. 31, 2972–2974 (2006).CrossRefADSGoogle Scholar
  32. 32.
    http://www.photond.com/products/crystalwave.htm (an overview of the computation engine implemented in the Crystal Wave tool by the Photon Design Ltd., Oxford).
  33. 33.
    H.V. Baghdasaryan and T.M. Knyazyan, “Problem of plane EM wave self-action in multilayer structure: an exact solution”, Opt. Quant. Electron. 31, 1059–1072 (1999).CrossRefGoogle Scholar
  34. 34.
    H.V. Baghdasaryan, T.M. Knyazyan, T.H. Baghdasaryan, and G.G. Eyramjyan, “Development of the method of single expression (MSE) for analysis of plane wave oblique incidence on multilayer structures having complex permittivity and permeability”, Proc. ICTON’2008, Vol. 1, 250–254 (2008).Google Scholar
  35. 35.
    H.V. Baghdasaryan, T.M. Knyazyan, and G.G. Eyramjyan, “Electrodynamical analysis of a transmittive metal-dielectric microstructure by the method of single expression”, Proc. European Microwave Association 4, 76–81 (2008).Google Scholar
  36. 36.
    H.V. Baghdasaryan and T.M. Knyazyan, “Modelling of strongly nonlinear sinusoidal Bragg gratings by the method of single expression”, Opt. Quant. Electron. 32, 869–883 (2000).CrossRefGoogle Scholar
  37. 37.
    P. Markos and C. M. Soukoulis, Wave Propagation. From Electrons to Photonic Crystals and Left-handed Materials, Princeton University Press, Princeton and Oxford, 2008.zbMATHGoogle Scholar
  38. 38.
    O. Duyar, F. Placido, and H.Z. Durusoy, “Optimization of TiO2 films prepared by reactive electron beam evaporation of Ti3O5”, J. Phys. D. Appl. Phys. 41, 095307 (2008).CrossRefADSGoogle Scholar
  39. 39.
    P. Johnson and R. Christy, “Optical constants of the noble metals”, Phys. Rev. B6, 4370–4379 (1972).ADSGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2010

Authors and Affiliations

  • R. Kotyński
    • 1
  • H. Baghdasaryan
    • 2
  • T. Stefaniuk
    • 1
  • A. Pastuszczak
    • 1
  • M. Marciniak
    • 3
  • A. Lavrinenko
    • 4
  • K. Panajotov
    • 5
    • 6
  • T. Szoplik
    • 1
  1. 1.Faculty of PhysicsUniversity of WarsawWarsawPoland
  2. 2.Fiber Optics Communication LaboratoryState Engineering University of ArmeniaYerevanArmenia
  3. 3.National Institute of TelecommunicationsWarsawPoland
  4. 4.Department of Photonics EngineeringTechnical University of DenmarkKgs. LyngbyDenmark
  5. 5.Department of Applied Physics and Photonics Vrije Universiteit Brussel, (IR-TONA)BrusselsBelgium
  6. 6.Institute of Solid State PhysicsBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations