Advertisement

Opto-Electronics Review

, Volume 18, Issue 4, pp 366–375 | Cite as

Fourier optics approach to imaging with sub-wavelength resolution through metal-dielectric multilayers

  • R. Kotyński
Invited Paper
  • 85 Downloads

Abstract

Metal-dielectric layered stacks for imaging with sub-wavelength resolution are regarded as linear isoplanatic systems — a concept popular in Fourier optics and in scalar diffraction theory. In this context, a layered flat lens is a one-dimensional spatial filter characterised by the point spread function. However, depending on the model of the source, the definition of the point spread function for multilayers with sub-wavelength resolution may be formulated in several ways. Here, a distinction is made between a soft source and hard electric or magnetic sources. Each of these definitions leads to a different meaning of perfect imaging. It is shown that some simple interpretations of the PSF, such as the relation of its width to the resolution of the imaging system are ambiguous for the multilayers with sub-wavelenth resolution. These differences must be observed in point spread function engineering of layered systems with sub-wavelength sized PSF.

Keywords

superresolution supercollimation linear isoplanatic systems point spread function engineering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.B. Pendry, “Negative refraction makes a perfect lens”, Phys. Rev. Lett. 85, 3966–3969 (2000).CrossRefADSGoogle Scholar
  2. 2.
    S.A. Ramakrishna, J.B. Pendry, D. Schurig, D.R. Smith, and S. Schultz, “The asymmetric lossy near-perfect lens”, J. Mod. Opt. 49, 1747–1762 (2002).zbMATHCrossRefADSGoogle Scholar
  3. 3.
    N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction—limited optical imaging with a silver superlens”, Science 308, 534–537 (2005).CrossRefADSGoogle Scholar
  4. 4.
    D.O. Melville and R.J. Blaikie, “Super-resolution imaging through a planar silver layer”, Opt. Express 13, 2127–2134 (2005).CrossRefADSGoogle Scholar
  5. 5.
    S.A. Ramakrishna and J.B. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain”, Phys. Rev. B67, 201101 (2003).ADSGoogle Scholar
  6. 6.
    B. Saleh and M. Teich, Fundamentals of Photonics, John Wiley & Sons, Inc, 2nd ed. (2007).Google Scholar
  7. 7.
    J.W. Goodman, Introduction to Fourier Optics, Roberts & Co Publ., 3rd ed. (2005).Google Scholar
  8. 8.
    B. Lee, Ph. Lalanne, and Y. Fainman, “Plasmonic diffractive optics and imaging: feature introduction”, Appl. Optics 49, PDO1–PDO1 (2010), (together with the contents of the topical issue of Appl. Optics 49 on “Plasmonic diffractive optics and imaging”, Information Processing, 2010.CrossRefGoogle Scholar
  9. 9.
    A. Wood, J.B. Pendry, and D.P. Tsai, “Directed subwave-length imaging using a layered metal-dielectric system”, Phys. Rev. B74, 115116 (2006).ADSGoogle Scholar
  10. 10.
    M. Scalora, G. D’Aguanno, N. Mattiucci, M.J. Bloemer, D. Ceglia, M. Centini, A. Mandatori, C. Sibilia, N. Akozbek, M.G. Cappeddu, M. Fowler, and J. Haus, “Negative refraction and sub-wavelength focusing in the visible range using transparent metallo-dielectric stacks”, Opt. Express 15, 508–523 (2007).CrossRefADSGoogle Scholar
  11. 11.
    D. de Ceglia, M.A. Vincenti, M.G. Cappeddu, M. Centini, N. Akozbek, A. D’Orazio, J. Haus, M.J. Bloemer, and M. Scalora, “Tailoring metallodielectric structures for superre-solution and superguiding applications in the visible and near-IR ranges”, Phys. Rev. A77, 033848 (2008).ADSGoogle Scholar
  12. 12.
    N.D. Mattiucci, D’Aguanno, M. Scalora, M.J. Bloemer, and C. Sibilia, “Transmission function properties for multi-layered structures: Application to super-resolution”, Opt. Express 17, 17517–17529 (2009).CrossRefADSGoogle Scholar
  13. 13.
    P.A. Belov, C. Simovski, and P. Ikonen, “Canalization of subwavelength images by electro-magnetic crystals”, Phys. Rev. B71, 193105 (2005).ADSGoogle Scholar
  14. 14.
    P.A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime”, Phys. Rev. B73, 113110 (2006).ADSGoogle Scholar
  15. 15.
    X. Li, S. He, and Y. Jin, “Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies”, Phys. Rev. B75, 045103 (2007).ADSGoogle Scholar
  16. 16.
    R. Kotynski and T. Stefaniuk, “Comparison of imaging with sub-wavelength resolution in the canalization and resonant tunnelling regimes”, J. Opt. A-Pure Appl. Op. 11, 015001 (2009).CrossRefADSGoogle Scholar
  17. 17.
    R. Kotynski and T. Stefaniuk, “Multiscale analysis of sub-wavelength imaging with metal-dielectric multilayers”, Opt. Lett. 35, 1133–1135 (2010).CrossRefGoogle Scholar
  18. 18.
    R. Kotynski, T. Stefaniuk, and A. Pastuszczak, “Sub-wave-length diffraction-free imaging with low-loss metal-dielectric multilayers”, ArXiv:1002.0658. (2010).Google Scholar
  19. 19.
    A.M. Conforti, M. Guasoni, and C.D. Angelis, “Subwave-length diffraction management”, Opt. Lett. 33, 2662 (2008).CrossRefADSGoogle Scholar
  20. 20.
    O. Melville and R.J. Blaikie, “Experimental comparison of resolution and pattern fidelity in single- and double-layer planar lens lithography”, J. Opt. Soc. Am. B23, 461–467 (2006).ADSGoogle Scholar
  21. 21.
    C.P. Moore, R.J. Blaikie, and M.D. Arnold, “An improved transfer-matrix model for optical superlenses”, Opt. Express 17, 14260–14269 (2009).CrossRefADSGoogle Scholar
  22. 22.
    D.O.S. Melville and R.J. Blaikie, “Experimental comparison of resolution and pattern fidelity in single- and double-layer planar lens lithography”, J. Opt. Soc. Am. B23, 461–467 (2006).ADSGoogle Scholar
  23. 23.
    P. Wrobel, J. Pniewski, T.J. Antosiewicz, and T. Szoplik, “Focusing radially polarized light by concentrically corrugated silver film without a hole”, Phys. Rev. Lett. 102, 183902 (2009).CrossRefADSGoogle Scholar
  24. 24.
    C.P. Moore, R.J. Blaikie, and M.D. Arnold, “An improved transfer-matrix model for optical superlenses”, Opt. Express 17, 14260–14269 (2009).CrossRefADSGoogle Scholar
  25. 25.
    X. Li, S. He, and Y. Jin, “Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies”, Phys. Rev. B75, 045103 (2007).ADSGoogle Scholar
  26. 26.
    M.A. Vincenti, A. D’Orazio, M.G. Cappeddu, N. Akozbek, M.J. Bloemer, and M. Scalora, “Semiconductor-based superlens for subwavelength resolution below the diffraction limit at extreme ultraviolet frequencies”, J. Appl. Phys. 105, 103103 (2009).CrossRefADSGoogle Scholar
  27. 27.
    C.P. Moore, M.D. Arnold, P.J. Bones, and R.J. Blaikie, “Image fidelity for single-layer and multi-layer silver superlenses”, J. Opt. Soc. Am. A25, 911–918 (2008).CrossRefADSGoogle Scholar
  28. 28.
    Q.M. Quan, S.L. Zhu, and R.P. Wang, “Refraction in the fixed direction at the surface of dielectric/silver superlattice”, Phys. Lett. A359, 547–549 (2006).ADSGoogle Scholar
  29. 29.
    X. Li and F. Zhuang, “Multilayered structures with high subwavelength resolution based on the metal-dielectric composites”, J. Opt. Soc. Am. A26, 2521–2525 (2009).CrossRefGoogle Scholar
  30. 30.
    H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals”, Appl. Phys. Lett. 74, 1212 (1999).CrossRefADSGoogle Scholar
  31. 31.
    R. Kotyśki, K. Król, J. Pniewski, and K. Panajotov, “Analysis of two-dimensional polarisation-coupled impulse response in multilayered metallic flat lens”, Proc. SPIE 6987, 69870G (2008).CrossRefGoogle Scholar
  32. 32.
    Handbook of Optical Constants of Solids, edited by A. Palik, Academic Press, 1998.Google Scholar
  33. 33.
    P. Markos and C.M. Soukoulis, Wave Propagation from Electrons to Photonic Crystals and Left-Handed Materials, Princeton University Press, Princeton and Oxford, 2008.zbMATHGoogle Scholar
  34. 34.
    P. Johnson and R. Christy, “Optical constants of the noble metals”, Phys. Rev. B6, 4370–4379 (1972).ADSGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2010

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of WarsawWarsawPoland

Personalised recommendations