Advertisement

Opto-Electronics Review

, Volume 16, Issue 4, pp 451–457 | Cite as

Corrugated SNOM probe with enhanced energy throughput

  • T. J. Antosiewicz
  • T. Szoplik
Original Papers
  • 59 Downloads

Abstract

In a previous paper we proposed a modification of metal-coated tapered-fibre aperture probes for scanning near-field optical microscopes (SNOMs). The modification consists in radial corrugations of the metal-dielectric interface oriented inward the core. Their purpose is to facilitate the excitation of surface plasmons, which increase the transport of energy beyond the cut-off diameter and radiate a quasi-dipolar field from the probe output rim. An increase in energy output allows for reduction of the apex diameter, which is the main factor determining the resolution of the microscope. In two-dimensional finite-difference time-domain (FDTD) simulations we analyse the performance of the new type of SNOM probe. We admit, however, that the two-dimensional approximation gives better results than expected from exact three-dimensional ones. Nevertheless, optimisation of enhanced energy throughput in corrugated probes should lead to at least twice better resolution with the same sensitivity of detectors available nowadays.

Keywords

scanning near-field optical microscope - SNOM SNOM resolution SNOM probes photon-plasmon coupling tapered-fibre metal-coated corrugated SNOM probes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.H. Synge, A suggested method for extending the microscopic resolution into the ultramicroscopic region, Philos. Mag. 6, 356–362 (1928).Google Scholar
  2. 2.
    D.W. Pohl, W. Denk, and M. Lanz, Optical stethoscopy: Image recording with resolution l/20, Appl. Phys. Lett. 44, 651–653 (1984).CrossRefADSGoogle Scholar
  3. 3.
    E. Betzig, P.L. Finn, and J.S. Weiner, Combined shear force and near-field scanning optical microscopy, Appl. Phys. Lett. 60, 2484–2486 (1992).CrossRefADSGoogle Scholar
  4. 4.
    M. Ohtsu, Near-Field Nano/Atom Optics and Technology, Springer, Tokyo, 1998.Google Scholar
  5. 5.
    J. Kim and K.B. Song, “Recent progress of nano-technology with NSOM”, Micron 38, 409–426 (2007).CrossRefGoogle Scholar
  6. 6.
    L. Novotny and B. Hecht, Principles of Nano-Optics, Cambridge University Press, Cambridge, 2007.Google Scholar
  7. 7.
    L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function”, Phys. Rev. E50, 4094–4196 (1994).ADSGoogle Scholar
  8. 8.
    K.Y. Kim, Y.K. Cho, H.S. Tae, and J.H. Lee, “Optical guided dispersions and subwavelength transmissions in dispersive plasmonic circular holes”, Opto-Electron. Rev. 14, 233–241 (2006).CrossRefADSGoogle Scholar
  9. 9.
    A. Lazarev, N. Fang, Q. Luo, and X. Zhang, “Formation of fine near-field scanning optical microscopy tips. Part I. By static and dynamic chemical etching”, Rev. Sci. Instrum. 74, 3679–3683 (2003).CrossRefADSGoogle Scholar
  10. 10.
    L.H. Haber, R.D. Schaller, J.C. Johnson, and R.J. Saykally, “Shape control of near-field probes using dynamic meniscus etching”, J. Microsc. 214, 27–35 (2004).CrossRefMathSciNetGoogle Scholar
  11. 11.
    J. Yang, J. Zhang, Z. Li, and Q. Gong, “Fabrication of high-quality SNOM probes by pre-treating the fibres before chemical etching”, J. Microsc. 228, 40–44 (2007).CrossRefGoogle Scholar
  12. 12.
    T. Yatsui, M. Kourogi, and M. Ohtsu, “Highly efficient excitation of optical near-field on an apertured fiber probe with an asymmetric structure”, Appl. Phys. Lett. 71, 1756–1758 (1997).CrossRefADSGoogle Scholar
  13. 13.
    S. Mononobe, T. Saiki, T. Suzuki, S. Koshihara, and M. Ohtsu, “Fabrication of a triple tapered probe for near-field optical spectroscopy in UV region based on selective etching of a multistep index fiber”, Opt. Commun. 146, 45–48 (1998).CrossRefADSGoogle Scholar
  14. 14.
    T. Yatsui, M. Kourogi, and M. Ohtsu, “Increasing throughput of a near-field optical fiber probe over 1000 times by the use of a triple-tapered structure”, Appl. Phys. Lett. 73, 2090–2092 (1998).CrossRefADSGoogle Scholar
  15. 15.
    P. Grabiec, T. Gotszalk, J. Radojewski, K. Edinger, N. Abedinov, and I.W. Rangelow, “SNOM/AFM microprobe integrated with piezoresistive cantilever beam for multifunctional surface analysis”, Microelectron. Eng. 61/62, 981–986 (2002).CrossRefGoogle Scholar
  16. 16.
    S. Bargiel, D. Heinis, Ch. Gorecki, A. Gorecka-Drzazga, J.A. Dziuban, and M. Jozwik, “A micromachined silicon-based probe for a scanning near-field optical microscope on-chip”, Meas. Sci. Technol. 17, 32–37 (2006).CrossRefADSGoogle Scholar
  17. 17.
    W.C.L. Hopman, R. Stoffer, and R.M. de Ridder, “High-resolution measurement of resonant wave patterns by perturbing the evanescent field using a nanosized probe in a transmission scanning near-field optical microscopy configuration”, J. Lightwave Technol. 25, 1811–1818 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=JLT-25-7-1811 CrossRefADSGoogle Scholar
  18. 18.
    E.X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture”, Appl. Phys. Lett. 86, 111106 (2005).CrossRefADSGoogle Scholar
  19. 19.
    K. Tanaka, M. Tanaka, and T. Sugiyama, “Creation of strongly localized and strongly enhanced optical near-field on metallic probe-tip with surface plasmon polaritons”, Opt. Express 14, 832–846 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-2-832 CrossRefADSGoogle Scholar
  20. 20.
    T.J. Antosiewicz and T. Szoplik, “Corrugated metal-coated tapered tip for scanning near-field optical microscope”, Opt. Express 15, 10920–10928 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-17-10920 CrossRefADSGoogle Scholar
  21. 21.
    A. Drezet, S. Huant, and J.C. Woehl, “In situ characterization of optical tips using single fluorescent nanobeads”, J. Lumin. 107, 176–181 (2004).CrossRefGoogle Scholar
  22. 22.
    T.J. Antosiewicz and T. Szoplik, “Description of near-and far-field light emitted from a metal-coated tapered fiber tip”, Opt. Express 15, 7845–7852 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7845 CrossRefADSGoogle Scholar
  23. 23.
    C. Sönnichsen, “Plasmons in metal nanostructures”, PhD Thesis Ludwig-Maximilians-Universtät München, München, (2001).Google Scholar
  24. 24.
    P. Johnson and R. Christy, “Optical constants of the noble metals”, Phys. Rev. B6, 4370–4379 (1972).ADSGoogle Scholar
  25. 25.
    W. Saj, “FDTD simulations of 2D plasmon waveguide on silver nanorods in hexagonal lattice”, Opt. Express 13, 4818–4827 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-13-4818 CrossRefADSGoogle Scholar
  26. 26.
    S.A. Maier, Plasmonics: Fundamentals and Applications, Springer, New York, 2007.Google Scholar
  27. 27.
    A. Drezet, M.J. Nasse, S. Huant, and J.C. Woehl, “The optical near-field of an aperture tip”, Europhys. Lett. 66, 41–47 (2004).CrossRefADSGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of WarsawWarsawPoland

Personalised recommendations