Advertisement

Opto-Electronics Review

, Volume 16, Issue 3, pp 297–308 | Cite as

Near-infrared spectroscopy extended with indocyanine green dye dilution for cerebral blood flow measurement: Median values in healthy volunteers

  • R. Mudra
  • C. Muroi
  • P. Niederer
  • E. Keller
Original Papers
  • 60 Downloads

Abstract

The cerebral blood flow (CBF) is an important vital parameter in neurointensive care. Currently, there is no non-invasive method for its measurement that can easily be applied at the bedside. A new tool to determine CBF is based on near-infrared spectroscopy (NIRS) applied together with indocyanine green (ICG) dye dilution. From a bilateral measurement on selected regions on the head of infrared (IR) absorption at various wavelengths during the dilution maneuver, the vascular perfusion characteristics of the two brain hemispheres can be determined in terms of mean transit time (mtt) of ICG, cerebral blood volume (CBV) and CBF.

So far, on nine healthy volunteers, NIRS ICG dye dilution bihemispheric measurements were performed, which yielded to mtt given as median (range) of 9.3 s (5.1–16.3 s), CBV of 3.5 ml/100 g (1.7–4.1 ml/100 g), and CBF of 18.2 ml/(100 g×min) [11.1–48.6 ml/(100 g×min)]. Additionally, the blood flow index (BFI) was calculated with BFI= 13.8 mg/(100 g×s) [6.6–15.2 mg/(100 g×s)]. The Spearman rank correlation coefficient between CBF and BFI was RS = 0.76. However, as the Bland & Altman plot between CBFNIRS and the CBFBFI documents, the limits of agreement are rather wide (21.9±6.7). Under physiological conditions in healthy volunteers, no differences could be detected between the hemispheres.

Keywords

cerebral blood flow indocyanine green dye lasers in medicine near-infrared spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Terborg, S. Bramer, S. Harchser, M. Simon, and O.W. Witte, “Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke by near-infrared spectroscopy and indocyanine green”, J. Neurol. Neurosur. Ps. 75, 38–42 (2004).Google Scholar
  2. 2.
    H. Obrig and A. Villringer, “Beyond the visible-imaging the human brain with light”, J. Cerebr. Blood F. Met. 23, 1–18 (2003).CrossRefGoogle Scholar
  3. 3.
    D.R. Hargroves, R.C. Tallis, V.M. Pomeroy, and A. Bhalla, “Near-infrared spectroscopy in stroke: from research to clinical practice”, Stroke 35, 70–72 (2004).CrossRefGoogle Scholar
  4. 4.
    A.D. Edwards, J.S. Wyatt, C. Richardson, D.T. Deply, M. Cope, and E.O. Reynolds, “Cotside measurement of cerebral blood flow in ill newborn infants by near infrared spectroscopy”, Lancet 2, 770–771 (1988).CrossRefGoogle Scholar
  5. 5.
    C.E. Elwell, M. Cope, A.D. Edwards, E.O. Reynolds, and D.T. Delpy, “Measurement of cerebral blood flow in adult humans using near infrared spectroscopy-methodology and possible errors”, Adv. Exp. Med. Biol. 317, 235–245 (1992).Google Scholar
  6. 6.
    I. Roberts, P. Fallon, F. Kirkham, A. Lloyd-Thomas, C. Cooper, R. Maynrad, M. Elliott, and A.D. Edwards, “Estimation of cerebral blood flow with near infrared spectroscopy and indocyanine green”, Lancet 342, 1425 (1993).CrossRefGoogle Scholar
  7. 7.
    P. Hopton, T.S. Walsh, and A. Lee, “Measurement of cerebral blood volume using near-infrared spectroscopy and indocyanine green elimination”, J. Appl. Physiol. 87, 1981–1987 (1999).Google Scholar
  8. 8.
    J. Patel, K. Marks, I. Roberts, D. Azzopardi, and A.D. Edwards, “Measurement of cerebral blood flow in newborn infants using near infrared spectroscopy with indocyanine green”, Pediatr. Res. 43, 134–139 (1998).CrossRefGoogle Scholar
  9. 9.
    I.J. Fox, L.G.S. Brooker, D.W. Heseltine, and E.H. Wood, “A new dye for continuous recording of dilution curves in whole blood independent of variations in blood oxygen saturation (abstract)”, Circulation 14, 937–938 (1956).Google Scholar
  10. 10.
    C.M. Levy, S.W. Stein, G.R. Cherrick, and C.S. Davidson, “Indocyanine green clearance. A test of liver excretory function”, Clin. Res. 7, 290–296 (1959).Google Scholar
  11. 11.
    E.C. Bradley and J.W. Barr, “Determination of blood volume using indocyanine green (cardio-green) dye”, Life Sci. 7, 1001–1007 (1968).CrossRefGoogle Scholar
  12. 12.
    E. Keller, H. Ishihara, A. Nadler, P. Niederer, B. Seifert, Y. Yonekawa, and K. Frei, “Evaluation of brain toxicity following near infrared light exposure after indocyanine green dye injection”, J. Neurosci. Meth. 117, 23–31 (2002).CrossRefGoogle Scholar
  13. 13.
    I.J. Fox and E.H. Wood, “Indocyanine green: physical and physiologic properties”, Mayo Clin. Proc. 35, 732–744 (1960).Google Scholar
  14. 14.
    E. Keller, A. Nadler, H.G. Imhof, P. Niederer, P. Roth, and Y. Yonekawa, “New methods for monitoring cerebral oxygenation and hemodynamics in patients with subarachnoid hemorrhage”, Acta Neurochir. Suppl. 82, 87–92 (2002).Google Scholar
  15. 15.
    W.M. Kuebler, A. Sckell, O. Habler, M. Kleen, G.E. Kuhnle, M. Welte, K. Messmer, and A.E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green”, J. Cerebr. Blood F. Met. 18, 445–456 (1998).CrossRefGoogle Scholar
  16. 16.
    F. Gora, S. Shinde, C.E. Elwell, J.C. Goldstone, M. Cope, D.T. Delpy, and M. Smith, “Noninvasive measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green: a pilot study”, J. Neurosurg. Anesth. 14, 218–222 (2002).CrossRefGoogle Scholar
  17. 17.
    E. Keller, A. Nadler, H. Alkadhi, S. S. Kollias, Y. Yonekawa, and P. Niederer, “Noninvasive measurement of regional cerebral blood flow and regional cerebral blood volume by near-infrared spectroscopy and indocyanine green dye dilution”, Neuroimage 20, 828–839 (2003).CrossRefGoogle Scholar
  18. 18.
    D.T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement”, Phys. Med. Biol. 33, 1433–1442 (1988).CrossRefGoogle Scholar
  19. 19.
    E. Okada and D.T. Delpy, “Effects of scattering of arachnoid trabeculae on light propagation in the adult brain”, Proc. OSA Biomedical Topical Meeting, 256–258 (2000).Google Scholar
  20. 20.
    J.S. Wyatt, M. Cope, D.T. Delpy, C.E. Richardson, A.D. Edwards, S. Wray, and E.O. Reynolds, “Quantitation of cerebral blood volume in human infants by near-infrared spectroscopy”, J. Appl. Physiol. 68, 1086–1091 (1990).Google Scholar
  21. 21.
    J.B. Bassingthwaighte, “Circulatory transport and the convolution integral”, Mayo Clin. Proc. 42, 137–154 (1967).Google Scholar
  22. 22.
    N.A. Lassen and W.A. Pearl, Tracer Kinetic Methods in Medical Physiology, Raven Press, New York, 1979.Google Scholar
  23. 23.
    M.L. Landsman, G. Kwant, G.A. Mook, and W.G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green”, J. Appl. Physiol. 40, 575–583 (1976).Google Scholar
  24. 24.
    Documenta Geigy Scientific Tables Basle: JR Geigy SA, 7th edition, 1970.Google Scholar
  25. 25.
    R. Mudra, A. Nadler, E. Keller, and P. Niederer, “Analysis of near infrared spectroscopy and indocyanine green dye dilution with Monte Carlo Simulation of light propagation in the adult brain”, J. Biomed. Opt. 11, (2006).Google Scholar
  26. 26.
    P. Smielewski, M. Czosnyka, J.D. Pickard, and P. Kirkpatrick, “Clinical evaluation of near-infrared spectroscopy for testing cerebrovascular reactivity in patients with carotid artery disease”, Stroke 28, 331–338 (1997).Google Scholar
  27. 27.
    J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head”, Phys. Med. Biol. 46, 879–896 (2001).CrossRefGoogle Scholar
  28. 28.
    M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, “Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals”, J. Biomed. Opt. 7, 464–470 (2002).CrossRefADSGoogle Scholar
  29. 29.
    R.L. Grubb Jr, M.E. Raichle, C.S. Higgins, and J.O. Eichling, “Measurement of regional cerebral blood volume by emission tomography”, Ann. Neurol. 4, 322–328 (1978).CrossRefGoogle Scholar
  30. 30.
    H. Ito, I. Kanno, C. Kato, T. Sasaki, K. Ishii, Y. Ouchi, A. Lida, H. Okazawa, K. Hayashida, N. Tsuyuguchi, K. Ishii, Y. Kuwabra, and M. Senda, “Database of normal human cerebral blood flow, cerebral blood volume, cerebral oxygen extraction fraction and cerebral metabolic rate of oxygen measured by positron emission tomography with 15O-labeled carbon dioxide or water, carbon monoxide and oxygen: a multicentre study in Japan”, Eur. J. Nucl. Med. Mol. I. 31, 635–643 (2004).CrossRefGoogle Scholar
  31. 31.
    A. Gupta, D. Menon, M. Czosnyka, P. Smielewski, P. Kirkpatrick, and J. Jones, “Non-invasive measurements of cerebral blood volume in volunteers”, Brit. J Anaesth. 78, 39–43 (1997).Google Scholar
  32. 32.
    C.E. Elwell, M. Cope, A.D. Edwards, J.S Wyatt, D.T. Delpy, and E.O. Reynolds, “Quantification of adult cerebral hemodynamics by near-infrared spectroscopy”, J. Appl. Physiol. 77, 2753–2760 (1994).Google Scholar
  33. 33.
    M.J. Van de Ven, W.N. Colier, M.C. van de Sluijy, D. Walraven, B. Oeseburg, and H. Folgering, “Can cerebral blood volume be measured reproducibly with an improved near infrared spectroscopy system?”, J. Cerebr. Blood F. Met. 21, 110–113 (2001).CrossRefGoogle Scholar
  34. 34.
    H. Owen-Reece, C.E. Elwell, J.S. Wyatt, and D.T. Delpy, “The effect of scalp ischemia on measurement of cerebral blood volume by near-infrared spectroscopy”, Physiol. Meas. 17, 279–286 (1996).CrossRefGoogle Scholar
  35. 35.
    K.L. Leenders, D. Perani, A.A. Lammertsma, J.D. Heather, P. Buckingham, M.J.R. Healy, J.M. Gibbs, R.J.S. Wise, J. Hatazawa, S. Herold, R.P. Beaney, D.J. Brooks, T. Spinks, C. Rodes, R.S.J. Frackowiak, and T. Jones, “Cerebral blood flow, blood volume and oxygen utilization normal values and effect of age”, Brain 113, 27–47 (1990).CrossRefGoogle Scholar
  36. 36.
    F. Chollet, P. Celsis, M. Clanet, B. Guiraud-Chaumeil, A. Rascol, and J. P. Marc-Vergnes, “SPECT study of cerebral blood flow reactivity after acetazolamide in patients with transient ischemic attacks”, Stroke 20, 458–464 (1989).Google Scholar
  37. 37.
    S.S. Kety and C.F. Schmidt, “The determination of cerebral blood flow in man by the use of nitrous oxide in low concentrations”, Am. J. Physiol. 143, 130–136 (1945).Google Scholar
  38. 38.
    C. Kolbitsch, I.H. Lorenz, C. Hormann, M. Schocke, C. Kremser, F. Zschiegner, S. Felber, and A. Benzer, “The impact of increased mean airway pressure on contrast-enhanced MRI measurement of regional cerebral blood flow (rCBF), regional cerebral blood volume (rCBV), regional mean transit time (rMTT), and regional cerebrovascular resistance (rCVR) in human volunteers”, Hum. Brain Mapp. 11, 214–222 (2000).CrossRefGoogle Scholar
  39. 39.
    A. Hoeft, “Dilutionstechniken und Ficksches Prinzip”, in Monitoring in Anästhesie und Intensivmedizin, pp. 246–287, Springer Verlag Berlin Heidelberg, 1998.Google Scholar
  40. 40.
    R.W. Stow and P.S. Hetzel, “An empirical formula for indicator-dilution curves as obtained in human beings”, J. Appl. Physiol. 7, 161–167 (1954).Google Scholar
  41. 41.
    A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinnerberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons”, J. Appl. Optics, 43, 3037–3047 (2004)CrossRefADSGoogle Scholar
  42. 42.
    A. Liebert, H. Wabnitz, J. Steinbrink, M. Möller, R. Macdonald, H. Rinnerberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance”, Neuroimage 24, 426–435 (2005)CrossRefGoogle Scholar
  43. 43.
    J. Steinbrink, T. Fischer, H. Kuppe, R. Hetzer, K. Uludag, H. Obrig, and W. M. Kuebler, “Relevance of depth resolution for cerebral blood flow monitroing by near-infrared spectroscopic bolus tracking during cardiopulmonary bypass”, J. Thorac. Cardiovasc. Surg. 132, 11721178 (2006).Google Scholar
  44. 44.
    E. Keller, T. Steiner, J. Fandino, S. Schwab, and W. Hacke, “Jugular venous oxygen saturation thresholds in trauma patients may not extrapolate to ischemic stroke patients: lessons from a preliminary study”, J. Neurosurg. Anesth. 14, 130–136 (2002).CrossRefGoogle Scholar
  45. 45.
    J. Meixensberger, J. Dings, H. Kuhnigk, and K. Roosen, “Studies of Tissue PO2 in normal and pathological human brain cortex”, Acta Neurochir. (Suppl.) 59, 58–63 (1993).Google Scholar
  46. 46.
    E. Keller, M. Wolf, M. Martin, J. Fandino, and Y. Yonekawa, “Estimation of cerebral oxygenation and hemodynamics in cerebral vasospasm using indocyaningreen (ICG) dye dilution and near infrared spectroscopy (NIRS). A case report”, J. Neurosurg. Anesth. 13, 43–48 (2001).CrossRefGoogle Scholar
  47. 47.
    A. Hoeft, “Dilutionstechniken und Ficksches Prinzip”, in Monitoring in Anästhesie und Intensivmedizin, pp. 250–291, Springer Berlin, Heidelberg, New York, 1995.Google Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Institute of Biomedical Engineering ETH/UNIZHZürichSwitzerland
  2. 2.Department of NeurosurgeryUniversity Hospital of ZürichZürichSwitzerland
  3. 3.Institute of Biomedical Engineering ETH/UNIZHZürichSwitzerland
  4. 4.Department of NeurosurgeryUniversity Hospital of ZürichZürichSwitzerland

Personalised recommendations