Advertisement

Opto-Electronics Review

, Volume 15, Issue 3, pp 163–167 | Cite as

Exciton localization behaviour in different well width undoped GaN/Al0.07Ga0.93N nanostructures

  • M. Sabooni
  • M. Esmaeili
  • H. Haratizadeh
  • B. Monemar
  • P. Paskov
  • S. Kamiyama
  • M. Iwaya
  • H. Amano
  • I. Akasaki
Article

Abstract

We report results from optical spectroscopy such as photoluminescence (PL) and time resolved photo-luminescence (TRPL) techniques from different well width MOCVD grown GaN/Al0.07Ga0.93N MQW samples. There is evidence of localization at low temperature in all samples. The decay time of all samples becomes non-exponential when the detection energy is increased with respect to the peak of the emission. Localization of carriers (excitons) is demonstrated by the “S-shape” dependences of the PL peak energies on the temperature. The time-resolved PL spectra of the 3-nm well multi quantum wells reveal that the spectral peak position shifts toward lower energies as the decay time increases and becomes red-shifted at longer decay times. There is a gradient in the PL decay time across the emission peak profile, so that the PL process at low temperatures is a free electron-localized hole transition.

Keywords

photoluminescence time-resolved photoluminescence quantum well exciton localization GaN/AlGaN 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.C. Jain, M. Willander, J. Narayan, and R. Van Overstraeten, “III-nitrides: Growth, characterization, and properties”, J. Appl. Phys. 87, 965 (2000).CrossRefADSGoogle Scholar
  2. 2.
    S. Nakamura, “InGaN-based multi-quantum-well-structure laser diodes”, Jpn. J. Appl. Phys. 35, L74 (1996).CrossRefGoogle Scholar
  3. 3.
    M. Gallart, A. Morel, T. Taliercio, P. Lefebvre, B. Gil, and J. Allegre, “Scale effect on exciton localization and nonradiative processes in GaN/AlGaN quantum wells”, Phys. Stat. Sol.(a) 180, 127 (2000).CrossRefADSGoogle Scholar
  4. 4.
    M. Esmaeili, H. Haratizadeh, B. Monemar, P.P. Paskov, P.O. Holtz, P. Bergman, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, “Photoluminescence study of MOCVD — grown GaN/AlGaN MQW nanostructures: influence of Al composition and Si doping”, Nanotechnology 17, 1–6 (2006).CrossRefGoogle Scholar
  5. 5.
    A. Hangleiter, J.S. Im, H. Kollmer, S. Hepple, J. Off, and F. Scholz, “The role of piezoelectric fields in GaN — based quantum wells”, MRS Internet J. Nitride Semicond. Res. 3, 15 (1998).Google Scholar
  6. 6.
    J.S. Im, H. Kollmer, J. Off, J. Sohmer, F. Scholz, and A. Hangleiter, “Reduction of oscillator strength due to piezoelectric fields in GaN/AlxGa1−xN quantum wells”, Phys. Rev. B57, R9435(1998).ADSGoogle Scholar
  7. 7.
    P. Lefebvre, J. Allegre, B. Gil, H. Mathieu, P. Bigenwald, and N. Grandjean, “Time-resolved photoluminescence as a probe of internal electric fields in GaN-(GaAl)N quantum wells”, Phys. Rev. B59, 15363 (1999) and references cited there in.ADSGoogle Scholar
  8. 8.
    M. Leroux, N. Grandjean, M. Laugt, J. Massies, B. Gil, P. Lefebvre, and P. Bigenwald, “Quantum confined stark effect due to built-in internal polarization fields in (Al, Ga)N/GaN quantum wells”, Phys. Rev. B58, R13371 (1998).Google Scholar
  9. 9.
    A. Bykhovski, B. Gelmont, and M. Shur, “Pyroelectricity in gallium nitride thin films”, Appl. Phys. Lett. 63, 2243 (1993).CrossRefADSGoogle Scholar
  10. 10.
    F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III–V nitrides”, Phys. Rev. B56, R10 024 (1997).Google Scholar
  11. 11.
    H. Haratizadeh, B. Monemar, P.P. Paskov, P.O. Holtz, G. Pozina, S. Kamiyama, M. Iwaya, H. Amano, and I. Akasaki, “Time resolved photoluminescence study of Si modulation doped GaN/Al0.07Ga0.93N multiple quantum wells”, Phys. Stat. Sol. (b) 241, 1124–1133 (2004).CrossRefADSGoogle Scholar
  12. 12.
    A. Reale, G. Massari, A. Di Carlo, P. Lugli, A. Vinattieri, D. Alderighi, M. Colocci, F. Semond, N. Grandjean, and J. Massies, “Polarization field effects on the recombination dynamics in low-In-content InGaN multi-quantum wells”, J. Appl. Phys. 93, 400 (2003).CrossRefADSGoogle Scholar
  13. 13.
    K.C. Zeng, J.Y. Lin, H.X. Jiang, A. Salvador, G. Popovici, H. Tang, W. Kim, and H. Morkoc, “Achieving highly conductive AlGaN alloys with high Al contents”, Appl. Phys. Lett. 71, 1368 (1997).CrossRefADSGoogle Scholar
  14. 14.
    C. Weisbuch, R. Dingle, A.C. Gossard, and W. Wiegmann, “Optical characterization of interface disorder in GaAs-Ga1-xAlxAS multi-quantum well structures”, Solid State Commun. 38, 709 (1981).CrossRefGoogle Scholar
  15. 15.
    M.A. Herman, D. Bimberg, and J. Christen, “Optical diagnostics for thin film processing”, J. Appl. Phys. 70, 704–709 (1991).CrossRefGoogle Scholar
  16. 16.
    J. Singh and K.K. Bajaj, “Role of interface roughness and alloy disorder in photoluminescence in quantum well structures”, J. Appl. Phys. 57, 5433–5437 (1985).CrossRefADSGoogle Scholar
  17. 17.
    B. Monemar, H. Haratizadeh, P. Paskov, G. Pozina, P.O. Holtz, P. Bergman, S. Kamiyama, M. Iwaya, H. Amano, and I. Akasaki, “Influence of polarization fields and depletion fields on photoluminescence of AlGaN/GaN multiple quantum well structures”, Phys. Stat. Sol. (b) 237, 353 (2003).CrossRefADSGoogle Scholar
  18. 18.
    M. Gallart, M. Morel, T. Taliercio, B. Gil, J. Allegre, H. Mathieu, B. Damilano, N. Grandjean, and J. Massies, “Reduction of carrier in-plane mobility in group-III nitride based quantum wells: the role of internal electric fields”, Phys. Stat. Sol. (a) 183, 61 (2001).CrossRefADSGoogle Scholar
  19. 19.
    P. Paskov, P.O. Holtz, B. Monemar, S. Kamiyama, M. Iwaya, H. Amano, and I. Akaski, “Phonon-assisted photoluminescence in InGaN/GaN multiple quantum wells”, Phys. Stat. Sol. (b) 234, 755 (2002).CrossRefADSGoogle Scholar
  20. 20.
    Y.P. Varshni, “Temperature dependence of the energy gap in semiconductors”, Physics 34, 149 (1967).Google Scholar
  21. 21.
    M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Gas source molecular beam intensities in undoped and doped GaN”, J. Appl. Phys. 86, 3721 (1999).CrossRefADSGoogle Scholar

Copyright information

© SEP 2007

Authors and Affiliations

  • M. Sabooni
    • 1
  • M. Esmaeili
    • 2
  • H. Haratizadeh
    • 2
    • 3
  • B. Monemar
    • 3
  • P. Paskov
    • 3
  • S. Kamiyama
    • 4
  • M. Iwaya
    • 4
  • H. Amano
    • 4
  • I. Akasaki
    • 4
  1. 1.Department of PhysicsIslamic Azad University, Shahrood BranchShahroodIran
  2. 2.Departments of PhysicsShahrood University of TechnologyShahroodIran
  3. 3.Departments of Physics and Measurements TechnologyLinköping UniversityLinköpingSweden
  4. 4.Department of Materials Science and Engineering and Hi-Tech Research CenterMeijo UniversityNagoyaJapan

Personalised recommendations