Opto-Electronics Review

, Volume 14, Issue 3, pp 243–251 | Cite as

Energy transport in plasmon waveguides on chains of metal nanoplates

  • W. M. Saj
  • T. J. Antosiewicz
  • J. Pniewski
  • T. Szoplik


An interest in energy transport in 3D chains of metal nanoparticles is oriented towards future applications in nanoscale optical devices. We consider plasmonic waveguides composed of silver nanoplates arranged in several geometries to find the one with the lowest attenuation. We investigate light propagation of 500-nm wavelength along different chains of silver nanoplates of subwavelength length and width and wavelength-size height. Energy transmission of the waveguides is analysed in the range of 400–2000 nm. We find that chain of short parallel nanoplates guides energy better than two electromagnetically coupled continuous stripes and all other considered nonparallel structures. In a wavelength range of 500–600 nm, this 2-μm long 3D waveguide transmits 39% of incident energy in a channel of λ × λ/2 cross section area.


surface plasmons-polaritons waveguides nano-optical devices plasmon resonance evanescent waves 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Raether, Surface Plasmons, Springer, Berlin, 1988.Google Scholar
  2. 2.
    C. Sönnichsen, “Plasmons in metal nanostructures”, PhD Thesis, Ludwig-Maximilians-Universität München, München, 2001.Google Scholar
  3. 3.
    A.V. Zayats and I.I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons”, J. Opt. A: Pure Appl. Opt. 5, S16–S50 (2003).CrossRefADSGoogle Scholar
  4. 4.
    W.L. Barnes, A. Dereux, and T.W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).CrossRefADSGoogle Scholar
  5. 5.
    D. Sarid, “Long-range surface-plasma waves on very thin metal films”, Phys. Rev. Lett. 47, 1927–1930 (1981).CrossRefADSGoogle Scholar
  6. 6.
    J.J. Burke, G.I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films”, Phys. Rev. B33, 5286–5301 (1986).ADSGoogle Scholar
  7. 7.
    W.L. Barnes, S.C. Kitson, T.W. Preist, and J.R. Sambles, “Photonic surfaces for surface-plasmon polaritons”, J. Opt. Soc. Am. A14, 1654–1661 (1997).ADSGoogle Scholar
  8. 8.
    M. Quinten, A. Leitner, J.R. Krenn, and F.R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles”, Opt. Lett. 23, 1331–1333 (1998).ADSGoogle Scholar
  9. 9.
    J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles”, Phys. Rev Lett. 82, 2590–2593 (1999).CrossRefADSGoogle Scholar
  10. 10.
    J.C. Weeber, A. Dereux, C. Girard, J.R. Krenn, and J.P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light”, Phys. Rev. B60, 9061–9068 (1999).ADSGoogle Scholar
  11. 11.
    B. Lamprecht, J.R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F.R. Aussenegg, and J.C. Weeber, “Surface plasmon propagation in microscale metal stripes”, Appl. Phys. Lett. 79, 51–53 (2001).CrossRefADSGoogle Scholar
  12. 12.
    J.C. Weeber, J.R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J.P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes”, Phys. Rev. B, 64045411 (2001).Google Scholar
  13. 13.
    J.C. Weeber, M.U. González, A.L. Baudrion, and A. Dereux, “Surface plasmon routing along right angle bent metal strips”, Appl. Phys. Lett. 87, 221101 (2005).Google Scholar
  14. 14.
    T. Yatsui, M. Kourogi, and M. Ohtsu, “Plasmon waveguide for optical far/near-field conversion”, Appl. Phys. Lett. 79, 4583–4585 (2001).CrossRefADSGoogle Scholar
  15. 15.
    P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures”, Phys. Rev. B61, 10484–10503 (2000).ADSGoogle Scholar
  16. 16.
    R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Skrzek, “Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width”, Opt. Lett. 52, 844–846 (2000).ADSGoogle Scholar
  17. 17.
    P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures”, Phys. Rev. B63, 125417 (2001).Google Scholar
  18. 18.
    R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons”, Opt. Express 13, 977–984 (2005). Scholar
  19. 19.
    P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon polariton waveguides”, J. Appl. Phys. 98, 043109 (2005).Google Scholar
  20. 20.
    A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M.S. Larsen, and S.I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons”, J. Lightwave Technol. 23, 413–422 (2005).CrossRefGoogle Scholar
  21. 21.
    K. Leosson, T. Nikolajsen, A. Boltasseva, and S.I. Bozhevolnyi, “Long-range surface plasmon polariton nanowire waveguides for device applications”, Opt. Express 14, 314–319 (2006). Scholar
  22. 22.
    M.L. Brongersma, J.W. Hartman, and H.A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit”, Phys. Rev. B62, R16356–R16359 (2000).ADSGoogle Scholar
  23. 23.
    S.A. Maier, “Guiding of electromagnetic energy in subwavelength periodic metal structures,” PhD Thesis, California Institute of Technology, Pasadena, 2003.Google Scholar
  24. 24.
    S.A. Maier, P.G. Kik, and H.A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides”, Phys. Rev. B67, 205402 (2003).Google Scholar
  25. 25.
    S.A. Maier, M.D. Friedman, P.E. Barclay, and O. Painter, “Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing”, Appl. Phys. Lett. 86, 071103 (2005).Google Scholar
  26. 26.
    A. Degiron and D.R. Smith, “Numerical simulations of long-range plasmons”, Opt. Express 14, 1611–1625 (2006). Scholar
  27. 27.
    W. Saj, “FDTD simulations of 2D plasmon waveguide on silver nanorods in hexagonal lattice”, Opt. Express 13, 4818–4827 (2005). Scholar
  28. 28.
    W.M. Saj, T.J. Antosiewicz, J. Pniewski, and T. Szoplik, “Plasmon waveguides on silver nanoelements”, Proc. SPIE 6195, 227–237 (2006).Google Scholar
  29. 29.
    L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration”, Opt. Express 13, 6645–6650 (2005). Scholar
  30. 30.
    R. Zia, M.D. Selker, P.B. Catrysse, and M.L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes”, J. Opt. Soc. Amer. A21, 2442–2446 (2004).CrossRefADSGoogle Scholar
  31. 31.
    J.A. Dionne, L.A. Sweatlock, H.A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization”, Phys. Rev. B73, 035407 (2006).Google Scholar
  32. 32.
    A. Taflove and S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Norwood, 2000.Google Scholar
  33. 33.
    P. Johnson and R. Christy, “Optical constants of the noble metals”, Phys. Rev. B6, 4370–4379 (1972).ADSGoogle Scholar
  34. 34.
    D. Gerace and L. Andreani, “Low-loss guided modes in photonic crystal waveguides”, Opt. Express 13, 4939–4951 (2005). Scholar

Copyright information

© COSiW SEP 2006

Authors and Affiliations

  • W. M. Saj
    • 1
  • T. J. Antosiewicz
    • 1
  • J. Pniewski
    • 1
  • T. Szoplik
    • 1
  1. 1.Faculty of PhysicsWarsaw UniversityWarsawPoland

Personalised recommendations