Advertisement

Biologia

pp 1–17 | Cite as

Thermophilous oak forests of the steppe and forest-steppe zones of Ukraine and Western Russia

  • Igor GoncharenkoEmail author
  • Yuri Semenishchenkov
  • James L. Tsakalos
  • Ladislav Mucina
Original Article
  • 22 Downloads

Abstract

We present a formal classification of thermophilous oak forests of the steppe and forest-steppe zones of Ukraine and Russia. Using 45 sources (synoptic tables; some from Central and Western Europe were also included for comparative purposes), we classified the data using cluster analyses, followed by post-classification tools aimed at formal identification of the optimal number of clusters and fidelity-based table sorting. Db-RDA ordination and a CART were used to identify the lead putative climatic drivers of the vegetation patterns. Of the six clusters identified by our classification procedures, two clusters are interpreted here as new alliances (Betonico-Quercion, Scutellario-Quercion). Some new associations classified into these alliances were also either validated or described as new. We further show that the Quercion petraeae is of heterogenous nature and the position of the units previously classified as the Potentillo albae-Quercion should be re-evaluated. NMDS was used to analyse the patterns of the phytocoenologic elements (diagnostic species of relevant syntaxonomic classes) in the six clusters. This analysis revealed that the classification of the Ukrainian and Russian thermophilous oak forests into the Quercetea pubescentis class is untenable and remains open to further scrutiny.

Keywords

Aceri tatarici-Quercion Betonico officinalis-Quercion roboris Eastern Europe Quercetea pubescentis Quercion petraeae Scutellario altissimae-Quercion roboris Thermophilous oak forests 

Abbreviations

CART

Classification and Regression Tree

db-RDA

Distance-based Redundancy Analysis

NMDS

Non-metric Multidimensional Scaling

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11756_2019_413_MOESM1_ESM.pdf (267 kb)
ESM 1 (PDF 266 kb)

References

  1. Aho K, Roberts DW, Weaver T (2008) Using geometric and non-geometric internal evaluators to compare eight vegetation classification methods. J Veg Sci 19:549–562.  https://doi.org/10.3170/2008-8-18406 CrossRefGoogle Scholar
  2. Bajrak OM (1996) Syntaxonomy of broad-leaved forests of the left-Bank Dnieper region. Ukr Fitotsenot Zbirn, Ser A 3:51–63 [in Ukrainian]Google Scholar
  3. Bellegard AL (1971) Steppic forestry. Lesnaya promishlenost, Moskva [in Russian]Google Scholar
  4. Blasi C, Di Pietro R, Filesi L (2004) Syntaxonomical revision of Quercetalia pubescenti-petraeae in the Italian peninsula. Fitosociologia 41:87–164Google Scholar
  5. Bøeuf R (2010) Le référentiel des types forestiers d’Alsace: apports phytosociologiques. Rev For Franç 62:331–364Google Scholar
  6. Bohn U, Gollub G, Hettwer C, Weber H, Neuhäuslová Z, Raus T, Schlüter H (2004) Karte der natürlichen vegetation Europas / map of the natural vegetation of Europe. Maßstab / scale 1: 2,500,000. Bundesamt für Naturschutz (BfN), Federal Agency for Nature Conservation, BonnGoogle Scholar
  7. Borhidi A (2003) Hungarian plant communities. Akadémiai Kiadó, Budapest [in Hungarian]Google Scholar
  8. Borhidi A, Kevey B, Lendvai G, Seregélyes T (2012) Plant communities of Hungary. Akadémiai Kiadó, Budapest [in Hungarian]Google Scholar
  9. Bradis EM (1971) Vegetation of the Ukrainian SSR. Forests. Naukova dumka, Kyiv [in Ukrainian]Google Scholar
  10. Braun-Blanquet J (1964) Pflanzensoziologie. Grundzüge der Vegetationskunde, Springer-Verlag, WienCrossRefGoogle Scholar
  11. Breiman L, Friedman J, Olshen R, Stone C (1984) Classification and regression trees. Wadsworth and Brooks, MontereyGoogle Scholar
  12. Bulokhov AD (1989) Ecological and phytocoenological structure of oak forests of the southern Nechernozemie region. In: Current state of forests of the Bryansk region and rational environmental management: collection of scientific papers. MFGO USSR, Moskva, pp 57–71 [in Russian]Google Scholar
  13. Bulokhov AD, Semenishchenkov YA (2013) Botanical-geographical peculiarities of xeromesophytic broad-leaved forests of the alliance of Quercion petraeae Zólyomi et Jakucs ex Jakucs 1960 of the Southern Nechernozemie region of Russia. Byull Bryan Otdel Russ Bot Obsch 1:10–24 [in Russian]Google Scholar
  14. Bulokhov AD, Solomeshch AI (1991) Syntaxonomy of forest vegetation of the Southern Nechernozemie region. I. Order Quercetalia pubescentis Br.-Bl. 1931. Manuscript. VINITI, Moskva. 13.03.1991. № 1099-891. [In Russian]Google Scholar
  15. Bulokhov AD, Solomeshch AI (2003) Ecologic-floristic classification of forests of the southern Nechernozemye of Russia. Izdatel’stvo BGU, Bryansk [in Russian]Google Scholar
  16. Brzeg A, Wika S (2017) Potentillo albae-Quercetum Libbert 1933 nom. invers. in the central region of the Wyżyna Krakowsko-Częstochowska. Bad Fizjograf, Ser B Bot 7:7–38 [In Polish]Google Scholar
  17. Chytrý M (1997) Thermophilous oak forests in the Czech Republic: Syntaxonomical revision of the Quercetalia pubescenti-petraeae. Fol Geobot 32:221–258.  https://doi.org/10.1007/BF02804006 CrossRefGoogle Scholar
  18. Chytrý M, Horák J (1997) Plant communities of the thermophilous oak forests in Moravia. Preslia 68:193–240Google Scholar
  19. Čarni A, Košir P, Karadžić B, Matevski V, Redžić S, Škvorc Ž (2009) Thermophilous deciduous forests in southeastern Europe. Plant Biosyst 143:1–13.  https://doi.org/10.1080/11263500802633881 CrossRefGoogle Scholar
  20. De Cáceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566–3574.  https://doi.org/10.1890/08-1823.1 CrossRefPubMedGoogle Scholar
  21. De Cáceres M, Legendre P, Moretti M (2010) Improving indicator species analysis by combining groups of sites. Oikos 119:1674–1684.  https://doi.org/10.1111/j.1600-0706.2010.18334.x CrossRefGoogle Scholar
  22. De Cáceres M, Legendre P, Wiser SK, Brotons L (2012) Using species combinations in indicator value analyses. Methods Ecol Evol 3:973–982.  https://doi.org/10.1111/j.2041-210X.2012.00246.x CrossRefGoogle Scholar
  23. Didukh YP (1996) The communities of the class Quercetea pubescenti-petraeae of the Crimean Mountains. Ukr Fitotsenot Zbirn, Ser A 1:63–77Google Scholar
  24. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366Google Scholar
  25. Ermakov NB, Korolyuk AY, Lashchinsky NN (1991) Floristic classification of the mesophilous grass-rich forests of southern Siberia. Preprint, Novosibirsk [in Russian]Google Scholar
  26. European Environmental Agency (2016) Biogeographical regions. https://www.eea.europa.eu/data-and-maps/data/biogeographical-regions-europe-3.
  27. Gayova Yu, Korotchenko I (2013) Forest vegetation with Daphne cneorum L. in the territory of Cherkassy-Chigirin Geobotanical District. Sci Bull NLTU Univ 23:27–33 [in Ukrainian]Google Scholar
  28. Goncharenko IV (2003) Analysis of the plant cover of the north-east Forest-steppe of Ukraine. Ukr Fitotsenot Zbirn, Ser A 19:1–204 [in Ukrainian]Google Scholar
  29. Granato D, Ares G (2013) Mathematical and statistical methods in food science and technology. Wiley Blackwell, ChichesterGoogle Scholar
  30. Gribova SA, Isachenko TI, Lavrenko EM (1980) Vegetation of the European part of the USSR. Nauka, Leningrad [in Russian]Google Scholar
  31. Gryn’ F (1940) New finds and growth conditions of Veronica umbrosa M.B. on the Donetsk ridge. Bot Zhurn Akad Nauk URSR 1:281–295 [in Ukrainian]Google Scholar
  32. Halkidi M, Batistskis Y, Vazirgiannis M (2001) On clustering validation techniques. J Intel Inform Syst 17:107–145CrossRefGoogle Scholar
  33. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  34. Horváth A, Kevey B, Lendvai G, Simon G, Sonnevend I (2017) Steppe woodlands with Tatarian maple (Aceri tatarici-Quercetum pubescentis-roboris Zólyomi 1957) in the Northern Mezőföld and adjacent areas, Hungary. Bot Közlem 104:109–130.  https://doi.org/10.17716/BotKozlem.2017.104.1.109 [in Hungarian]CrossRefGoogle Scholar
  35. Indreica A (2011) On the occurence in Romania of Potentillo albae-Quercetum petraeae Libbert 1933 association. Not Bot Horti Agrobot Cluj-Napoca 39:297–306.  https://doi.org/10.15835/nbha3915452 CrossRefGoogle Scholar
  36. Issler E (1931/1926) Les associations silvatiques haut-rhinoises: Classification sociologique des Forêts du département du Haut-Rhin à l’exclusion du Sundgau et du Jura alsacien (avec une carte). Bull Soc Bot France 73:62–141.  https://doi.org/10.1080/00378941.1926.10832847 CrossRefGoogle Scholar
  37. Jakubowska-Gabara J (2000) Forest communities that developed as a result of transformations of the Potentillo albae-Quercetum Libb. 1933 association in Poland. Acta Univ Lodz. Fol Bot 15:3–47 [in Polish]Google Scholar
  38. Jakucs P (1961) Die phytozönologischen Vernältnisse der Flaumeichen-Buschwälder Südostmitteleuropas. Akadémiai Kiadó, BudapestGoogle Scholar
  39. Kasprowicz M (2010) Acidophilous oak forests of the Wielkopolska region (West Poland) against the background of Central Europe. Biodivers: Res Conserv 20:1–212.  https://doi.org/10.2478/v10119-010-0012-4 CrossRefGoogle Scholar
  40. Kevey B (2008) Forest associations of Hungary. Tilia 14:1–488 [in Hungarian]Google Scholar
  41. Kleopov YD (1933) Vegetation cover of the southwestern part of the Donetsk ridge. Vіsn Kyiv Botan Gard 15:9–162 [in Ukrainian]Google Scholar
  42. Kleopov JD (1990) Analysis of the flora of deciduous forests of the European part of the USSR. Naukova dumka, Kiev [in Russian]Google Scholar
  43. Kotov MI, Karnaukh ED (1940) Vegetation of reserves in the Stalin region. Bot Zhurn Akad Nauk URSR 1:335–352 [in Ukrainian]Google Scholar
  44. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Zeitschr 15:259–263.  https://doi.org/10.1127/0941-2948/2006/0130 CrossRefGoogle Scholar
  45. Kruskal JB (1964) Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29:1–27CrossRefGoogle Scholar
  46. Kwiatkowska AJ, Solińska-Górnicka B (1993) Changes in typological and spatial boundaries between neighbouring communities of Potentillo albae-Quercetum and Tilio-Carpinetum. Acta Soc Bot Polon 62:59–66CrossRefGoogle Scholar
  47. Legendre P, De Cáceres M (2013) Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol Lett 16:951–963.  https://doi.org/10.1111/ele.12141 CrossRefPubMedGoogle Scholar
  48. Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280.  https://doi.org/10.1007/s004420100716 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Legendre P, Legendre L (2012) Numerical ecology, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  50. Lendvai G, Horváth A, Kevey B (2014) Steppe woodlands with Tatarian maple (Aceri tatarici-Quercetum pubescentis-roboris Zólyomi 1957) in the Mezőföld, Central Hungary. Bot Közlem 101:145–188 [in Hungarian]Google Scholar
  51. Libbert W (1933) Die Vegetationseinheiten der neumärkischen Staubeckenlandschaft unter Berücksichtigung der angrenzenden Landschaften. Verh Bot Ver Prov Brandenburg 75:229–348Google Scholar
  52. Lötter M, Mucina L, Witkowski E (2013) The classification conundrum: species fidelity as leading criterion in search of a rigorous method to classify a complex forest data set. Comm Ecol 14:121–132.  https://doi.org/10.1556/ComEc.14.2013.1.13 CrossRefGoogle Scholar
  53. Martynenko VB, Yamalov SM, Zhigunov OYu, Filinov AA (2005) Vegetation of the State Nature Reserve “Shulgan-Tash.” Gilem, Ufa [in Russian]Google Scholar
  54. Martynenko VB, Shirokikh PS, Muldashev AA, Solomeshch AI (2008) New association of steppic oak forests in the southern Urals. Rastit Ross 13:49–60 [in Russian]Google Scholar
  55. Matevski V, Čarni A, Ćušterevska R, Kostadinovski M, Mucina L (2018) Syntaxonomy and biogeography of dry grasslands on calcareous substrates in the central and southern Balkans. Appl Veg Sci 21:488–513.  https://doi.org/10.1111/avsc.12374 CrossRefGoogle Scholar
  56. Matuszkiewicz W (2007) Guide to identification of the plant communities of Poland. Wydawnictwo naukowe PWN, Warszawa [in Polish]Google Scholar
  57. McCune B, Grace JB, Urban DL (2002) Analysis of ecological communities. MjM Software Design, Gleneden BeachGoogle Scholar
  58. Meusel H, Jäger EJ, Weinert E (1965) Vergleichende Chorologie der Zentraleuropäischen Flora. G. Fischer Verlag, JenaGoogle Scholar
  59. Mirkin BM, Martynenko VB, Alibaev FK, Baisheva EZ, Gorichev YP, Davidichev AN, Muldashev AA, Shirokikh PS, Yamalov SM (2008) Flora and vegetation of the South Ural state nature reserve. Gilem, Ufa [in Russian]Google Scholar
  60. Mirkin BM, Martynenko VB, Bayesheva EZ, Muldashev AA, Sultangareyeva LA, Urbanwichius GP, Urbanavichene IN, Shirokikh PS, Yakupov II, Yamalov SM (2010) Flora and vegetation of the National Park “Bashkiria.” Gilem, Ufa [in Russian]Google Scholar
  61. Mucina L (1982) Numerical classification and ordination of ruderal plant communities (Sisymbrietalia, Onopordetalia) in the western part of Slovakia. Vegetatio 48:267–275CrossRefGoogle Scholar
  62. Mucina L, Grabherr G, Wallnöfer S (eds) (1993) Die Pflanzengesellschaften Österreichs. III. Wälder und Gebüsche. G. Fischer Verlag, JenaGoogle Scholar
  63. Mucina L, Bültmann H, Dierßen K, Theurillat J-P, Raus T, Čarni A, Šumberová K, Willner W, Dengler J, García RG, Chytrý M, Hájek M, Di Pietro R, Iakushenko D, Pallas J, Daniëls FJA, Bergmeier E, Santos Guerra A, Ermakov N, Valachovič M, Schaminée JHJ, Lysenko T, Didukh YP, Pignatti S, Rodwell JS, Capelo J, Weber HE, Solomeshch A, Dimopoulos P, Aguiar C, Hennekens SM, Tichý L (2016) Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Appl Veg Sci 19:3–264.  https://doi.org/10.1111/avsc.12257 CrossRefGoogle Scholar
  64. Nazarenko NM, Kuzemko AA (2011) Syntaxa of vegetation of deciduous forests of the northern steppe of Ukraine. Nаukovі Dopovіdі NUBIP: Elektronn Zhurn 24 [in Ukrainian]Google Scholar
  65. Oberdorfer E (1992) Süddeutsche Pflanzengesellschaften. IV. Wälder und Gebüsche, 2. Auflage. G. Fischer, JenaGoogle Scholar
  66. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2019) Vegan: community ecology package. R package version 2.4–6. https://cran.r-project.org/web/packages/vegan/index.html. Accessed 30 Jul 2019
  67. Panchenko S (2015) Light oak forests in the northeastern part of Ukraine, peculiarities of their dynamics and questions of protection. Vіsnyk L’vіv Unіv, Ser Bіol 70:47–58 [in Ukrainian]Google Scholar
  68. Pietro R, Azzella M, Facioni L (2010) The forest vegetation of the Tolfa-Ceriti mountains (northern Latium-Central Italy). Hacquetia 9(1):91–150CrossRefGoogle Scholar
  69. Pogrebnyak PS (1955) Basics of forest typology. Izdatel’stvo Akad Nauk USSR, Kyiv [in Russian]Google Scholar
  70. Posokhov PP (1965) Features of the composition of the oak forests of Odessa region. Ukr Bot Zhurn 22:60–67 [in Ukrainian]Google Scholar
  71. Rendón E, Abundez I, Arizmendi A, Quiroz EM (2011) Internal versus external cluster validation indexes. Int J Comp Communic 5:27–34Google Scholar
  72. Rivas-Martínez S, González FF, Arregui JJL, Lousã MF, Merino ÁP (2001) Syntaxonomical checklist of vascular plant communities of Spain and Portugal to association level. Itin Geobot:5–341Google Scholar
  73. Roleček J (2005) Vegetation types of dry-Mesic oak forests in Slovakia. Preslia 77:241–261Google Scholar
  74. Roleček J (2007) Formalized classification of thermophilous oak forests in the Czech Republic: what brings the cocktail method? Preslia 79:1–21Google Scholar
  75. Roleček J (2013) Thermophilous oak forests. In: Chytrý M (ed) Vegetation of the Czech Republic 4. Forest and shrub vegetation. Academia, Praha, pp 296–346 [in Czech]Google Scholar
  76. Sanda V, Öllerer K, Burescu P (2008) The phytocoenoses of Romania – Syntaxonomy, structure and evolution. Ars Doccndi, Bucureşti [in Romanian]Google Scholar
  77. Semenishchenkov YA (2012) Controversial questions of syntaxonomy of the xeromesophytic deciduous forests of the South-Western Nechernozemie region of Russia. Izv Samar Nauch Tsentra Ross Akad Nauk 14:1117–1120 [in Russian]Google Scholar
  78. Semenishchenkov YuA, Panchenko SM (2012) Ecological and floristic differentiation of coenoflora of xeromesophytic forests of the order Quercetalia pubescenti-petraeae Klika 1933 in the middle Desna basin (Russia and Ukraine). In: Flora and vegetation of the central Chernozem region – 2012: conference proceedings, Kursk, April 6, 2012. Kursk, pp 142–150 [in Russian]Google Scholar
  79. Semenishchenkov YA, Poluyanov AV (2014) Steppic broad-leaved forests of the alliance Aceri tatarici-Quercion Zolyomi 1957 on the central-Russian upland. Rastit Ross 24:101–123 [in Russian]Google Scholar
  80. Semenishchenkov YA, Teleganova VV (2013) Syntaxonomy and ecology of xeromesophytic oak forests of the Oka Valley within the Kaluga region. Uchen Zapis Orlov Gosudar Univ 3:132–138 [in Russian]Google Scholar
  81. Shevchyk VL, Solomakha VA, Voityuk YO (1996) Syntaxonomy of vegetation and a list of flora of the Kaniv nature reserve. Ukr Fitotsenot Zbirn, Ser B 4:1–119 [in Ukrainian]Google Scholar
  82. Sokolova TA (2011) Problems of classification of arena oak forests in the north part of Rostov region. Akt Probl Guman Estestv Nauk 3:32–38 [in Russian]Google Scholar
  83. Solomeshch AI, Grigoriev IN, Khaziakhmetov RM (1989) Syntaxonomy of the forest of the southern Urals. III. Order Quercetalia pubescentis. Manuscript. VINITI, Moskva. 12.10.1989. No 6233-B89. [in Russian]Google Scholar
  84. Solomeshch AI, Grigoriev IN, Muldashev AA, Alimbekova LM (1994) Vegetation cover of the Shaitan-tau mountain ridge. In: Oak forests on the Shaytan-tau ridge and its protection issues. Ufimskii Nauchnii Tsentr’ Rossiiskoi Akademii Nauk, Ufa, pp 27–96 [in Russian]Google Scholar
  85. Stupar V, Milanović Đ, Brujić J, Čarni A (2015) Formalized classification and nomenclatural revision of thermophilous deciduous forests (Quercetalia pubescentis) of Bosnia and Herzegovina. Tuexenia 35:85–130.  https://doi.org/10.14471/2015.35.016 CrossRefGoogle Scholar
  86. Tichý L, Chytrý M, Hájek M, Talbot SS, Botta-Dukát Z (2010) OptimClass: using species-to-cluster fidelity to determine the optimal partition in classification of ecological communities. J Veg Sci 21:287–299.  https://doi.org/10.1111/j.1654-1103.2009.01143.x CrossRefGoogle Scholar
  87. Treiber R, Remmert G (1998) Waldgesellschaften xerothermer Standorte der elsässischen Harth (Frankreich, Haut-Rhin). Tuexenia 18:21–50Google Scholar
  88. Tzonev RT, Dimitrov MA, Roussakova VH (2009) Syntaxa according tо the Braun-Blanquet approach in Bulgaria. Phytol Balcan 15:209–233Google Scholar
  89. Tsakalos JL, Renton M, Dobrowolski MP, Feoli E, Macintyre PD, Veneklaas E, Mucina L (2018) Community patterns and environmental drivers in hyper-diverse kwongan scrub vegetation of Western Australia. Appl Veg Sci 21:694–722.  https://doi.org/10.1111/avsc.12399 CrossRefGoogle Scholar
  90. Vorobyov DV (1953) Types of forests in the European part of the USSR. Izdatel’stvo AN USSR, Kyiv [in Russian]Google Scholar
  91. Vorobyov YO, Smoliar NO, Smagliuk OY, Solomakha ІV (2017) New association of xeromesophytic oak forests of Aceri tatarici-Quercion roboris alliance (class Quercetea pubescentis) in the basin of lower Sula. Chornomor Bot Zhurn 13:295–305 [in Ukrainian]CrossRefGoogle Scholar
  92. Weber HE, Moravec J, Theurillat J-P (2000) International code of Phytosociological nomenclature. 3rd edition. J Veg Sci 11:739–768.  https://doi.org/10.2307/3236580 CrossRefGoogle Scholar
  93. Westhoff V, van der Maarel E (1978) The Braun-Blanquet approach. In: Whittaker RH (ed) Classification of plant communities. Dr W. Junk, The Hague, pp 287–399CrossRefGoogle Scholar
  94. Willner W, Solomeshch A, Čarni A, Bergmeier E, Ermakov N, Mucina L (2016) Description and validation of some European forest syntaxa – a supplement to the EuroVegChecklist. Hacquetia 15(1):15–25CrossRefGoogle Scholar
  95. Zólyomi B (1957) Der Tatarenahorn-Eichen-Lösswald der zonalen Waldsteppe. Acta Bot Acad Sci Hung 3:401–424Google Scholar
  96. Zólyomi B, Horváth A, Kevey B, Lendvai G (2013) Steppe woodlands with Tatarian maple (Aceri tatarici-Quercetum pubescentis-roboris) on the great Hungarian plain and its neighbourhood. An unfinished synthesis with supplementary notes. Acta Bot Hung 55:167–189.  https://doi.org/10.1556/ABot.55.2013.1-2.11 CrossRefGoogle Scholar

Copyright information

© Plant Science and Biodiversity Centre, Slovak Academy of Sciences 2020

Authors and Affiliations

  1. 1.Institute for Evolutionary EcologyNational Academy of Sciences of UkraineKyivUkraine
  2. 2.Bryansk State UniversityBryanskRussia
  3. 3.School of Plant BiologyThe University of Western AustraliaCrawleyAustralia
  4. 4.Harry Butler InstituteMurdoch UniversityPerthAustralia
  5. 5.Department of Geography & Environmental StudiesStellenbosch UniversityStellenboschSouth Africa

Personalised recommendations