Advertisement

Biologia

pp 1–8 | Cite as

Fingerprinting the genetic variation and intergeneric hybrid dynamics in the family Asteraceae (genera Helianthus, Echinaceae, Tagetes and Verbesina) using iPBS markers

  • Georgi Nikolaev BonchevEmail author
  • Roumiana Vassilevska-Ivanova
Original Article

Abstract

Transposable elements constitute a large fraction of plant genomes and represent a powerful marker tool for genetic diversity studies. Here, the retrotransposon-based marker method inter primer binding sites (iPBS) was used to assess the genetic variation and intergeneric hybrid dynamics in the family Asteraceae by studying genera Helianthus, Echinaceae, Tagetes, Tithonia and Verbesina. Two selected iPBS primers (2222 and 2224) detected intergeneric polymorphism in the range 44.8% - 93.3% (mean 70%) and 85.7% - 100% (mean 89.5%) respectively. Moreover, iPBS markers allowed the genetic discrimination at within-species level between varieties of H. annuus (35.7% and 19.1%) but also between single cross’s segregating intergeneric hybrids (28.6% and 40%). The inheritance of iPBS markers and the parental genomes respectively in intergeneric hybrids of H. annuus has been manifested by the non-random elimination of markers mainly of origin of wild species and the preferential inheritance of markers unique to H. annuus. Such instability evidences genomic reconstruction involving LTR elements. In conclusion, the iPBS method stands as a reliable approach for the evaluation of genetic diversity of Asteraceae germplasms and perspective for use in the breeding practice of sunflower and related species.

Keywords

Transposable elements Molecular markers Sunflower hybrids Genetic diversity 

Abbreviations

TEs

Transposable Elements

IRAP

Inter Retrotransposon Amplified Polymorphism

iPBS

inter Primer Binding Sites

REMAP

Retrotransposon Microsatellite Amplified Polymorphism

Notes

Acknowledgments

This work was supported by IAEA National TC Project Bul 5/014 “Screening of Cereal Germplasm Stress Response and Adaptation Potential by Advanced Nuclear, Omics and Physiological Approaches”.

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11756_2019_363_MOESM1_ESM.doc (44 kb)
ESM 1 (DOC 43 kb)

References

  1. Adams KL, Cronn R, Percifield R, Wendel JF (2003) Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci U S A 100:4649–4654.  https://doi.org/10.1073/pnas.0630618100 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Andeden EE, Baloch FS, Derya M, Kilian B, Özkan H (2013) iPBS-Retrotransposons-based genetic diversity and relationship among wild annual Cicer species. J Plant Biochem Biotechnol 22:453–466.  https://doi.org/10.1007/s13562-012-0175-5 CrossRefGoogle Scholar
  3. Baloch FS, Alsaleh A, de Miera LES, Hatipoğlu R, Ciftci V, Karakoy T, Yıldız M, Ozkan H (2015a) DNA based iPBS-retrotransposon markers for investigating the population structure of pea (Pisum sativum) germplasm from Turkey. Biochem Syst Ecol 61:244–252.  https://doi.org/10.1016/j.bse.2015.06.017 CrossRefGoogle Scholar
  4. Baloch FS, Derya M, Andeden EE, Alsaleh A, Comertpay G, Kilian B, Ozkan H (2015b) Inter-primer binding site retrotransposon and inter-simple sequence repeat diversity among wild Lens species. Biochem Syst Ecol 58:162–168.  https://doi.org/10.1016/j.bse.2014.12.002 CrossRefGoogle Scholar
  5. Baranek M, Meszaros M, Sochorova J, Čechova J, Raddova J (2012) Utility of retrotransposon-derived marker systems for differentiation of presumed clones of the apricot cultivar Velkopavlovicka. Sci Hortic 143:1–6.  https://doi.org/10.1016/j.scienta.2012.05.022 CrossRefGoogle Scholar
  6. Barton NH (2001) The role of hybridization in evolution. Mol Ecol 10:551–568.  https://doi.org/10.1046/j.1365-294x.2001.01216.x CrossRefPubMedGoogle Scholar
  7. Basirnia A, Darvishzadeh R, Abdollahi MB (2014) Retrotransposon insertional polymorphism in sunflower (Helianthus annuus L.) lines revealed by IRAP and REMAP markers, Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology: Official Journal of the Societa Botanica Italiana.  https://doi.org/10.1080/11263504.2014.970595 CrossRefGoogle Scholar
  8. Breton C, Gil A, Wargnier J, Seriyes H, Berville A (2012) Transfer of architectural traits from perennial Helianthus mollis Lam. to sunflower (H. annuus L.) and localisation of introgression. Euphytica 186(2):557–572.  https://doi.org/10.1007/s10681-012-0656-6 CrossRefGoogle Scholar
  9. Bryant D, Moulton V (2004) Neighbor-net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 21:255–265.  https://doi.org/10.1007/3-540-45784-4_28 CrossRefPubMedGoogle Scholar
  10. Chen ZJ (2007) Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol 58:377–406.  https://doi.org/10.1146/annurev.arplant.58.032806.103835 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chen L, Lou Q, Zhuang Y, Chen J, Zhang X, Wolukau JN (2007) Cytological diploidization and rapid genome changes of the newly synthesized allotetraploids Cucumis x hytivus. Planta 225:603–614.  https://doi.org/10.1007/s00425-006-0381-2 CrossRefPubMedGoogle Scholar
  12. Choulet F, Alberti A, Theil S et al (2014) Structural and functional partitioning of bread wheat chromosome 3B. Science 345:1249721.  https://doi.org/10.1126/science.1249721 CrossRefPubMedGoogle Scholar
  13. Comai L (2000) Genetic and epigenetic interactions in allopolyploid plants. Plant Mol Biol 43:387–399.  https://doi.org/10.1023/A:1006480722854 CrossRefPubMedGoogle Scholar
  14. Delgado A, Carvalho A, Martín AC, Martín A, Lima-Brito J (2017) Genomic restructuring in F1 Hordeum chilense × durum wheat hybrids and corresponding hexaploid tritordeum lines revealed by DNA fingerprinting analyses. J Genet 96:e13–e24.  https://doi.org/10.1007/s12041-017-0772-0 CrossRefPubMedGoogle Scholar
  15. Demirel U, Tındaş I, Yavuz C, Baloch FS (2018) Assessing genetic diversity of potato genotypes using inter-PBS retrotransposon marker system. Plant Genet Res 16:137–145.  https://doi.org/10.1017/S1479262117000041 CrossRefGoogle Scholar
  16. Feldman M, Liu B, Segal G, Abbo S, Levy AA, Vega JM (1997) Rapid elimination of low-copy DNA sequences in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes. Genetics 147:1381–1387PubMedPubMedCentralGoogle Scholar
  17. Giordani T, Cavallini A, Natali L (2014) The repetitive component of the sunflower genome. Curr Plant Biol 1:45–54.  https://doi.org/10.1016/j.cpb.2014.05.001 CrossRefGoogle Scholar
  18. Grandbastien MA (1998) Activation of plant retrotransposons under stress conditions. Trends Plant Sci 3:181–187.  https://doi.org/10.1016/S1360-1385(98)01232-1 CrossRefGoogle Scholar
  19. Guo DL, Guo MX, Hou XG, Zhang GH (2014) Molecular diversity analysis of grape varieties based on iPBS markers. Bioc Syst Ecol 52:27–32.  https://doi.org/10.1016/j.bse.2013.10.008 CrossRefGoogle Scholar
  20. Hegarty MJ, Barker GL, Wilson ID, Abbott RJ, Edwards KJ, Hiscock SJ (2006) Transcriptome shock after interspecific hybridization in Senecio is ameliorated by genome duplication. Curr Biol 16:1652–1659.  https://doi.org/10.1016/j.cub.2006.06.071 CrossRefPubMedGoogle Scholar
  21. Hegarty MJ, Barker GL, Brennan AC, Edwards KJ, Abbott RJ, Hiscock SJ (2008) Changes to gene expression associated with hybrid speciation in plants: further insights from transcriptomic studies in Senecio. Philos Trans R Soc Lond Ser B Biol Sci 363:3055–3069.  https://doi.org/10.1098/rstb.2008.0080 CrossRefGoogle Scholar
  22. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267.  https://doi.org/10.1093/molbev/msj030 CrossRefPubMedGoogle Scholar
  23. Kalendar R, Antonius K, Smýkal P, Schulman AH (2010) iPBS: a universal method for DNA fingerprinting and retrotransposon isolation. Theor Appl Genet 121:1419–1430.  https://doi.org/10.1007/s00122-010-1398-2 CrossRefPubMedGoogle Scholar
  24. Kashkush K, Feldman M, Levy AA (2002) Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics 160:1651–1659PubMedPubMedCentralGoogle Scholar
  25. Kawakami T, Dhakal P, Katterhenry AN, Heatherington CA, Ungerer MC (2011) Transposable element proliferation and genome expansion are rare in contemporary sunflower hybrid populations despite widespread transcriptional activity of LTR retrotransposons. Genome Biol Evol 3:56–167.  https://doi.org/10.1093/gbe/evr005 CrossRefGoogle Scholar
  26. Koh J, Soltis PS, Soltis DE (2010) Homeolog loss and expression changes in natural populations of the recently and repeatedly formed allotetraploid Tragopogon mirus (Asteraceae). BMC Genomics 11:97.  https://doi.org/10.1186/1471-2164-11-97 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Liu J, Xu X, Xiuxin DX (2005) Intergeneric somatic hybridization and its application to crop genetic improvement. Plant Cell Tissue Organ Cult 82:19–44.  https://doi.org/10.1007/s11240-004-6015-0 CrossRefGoogle Scholar
  28. Liu Z, Seiler GJ, Gulya TJ, Feng J, Rashid KY, Cai X, Jan CC (2017) Triploid production from interspecific crosses of two diploid perennial Helianthus with diploid cultivated sunflower (Helianthus annuus L.). G3 (Bethesda) 37(4):1097–1108.  https://doi.org/10.1534/g3.116.036327 CrossRefGoogle Scholar
  29. Ma J, Devos KM, Bennetzen JL (2004) Analyses of LTR retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14:860–869.  https://doi.org/10.1101/gr.1466204 CrossRefPubMedPubMedCentralGoogle Scholar
  30. McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801.  https://doi.org/10.1126/science.15739260 CrossRefPubMedGoogle Scholar
  31. Mehmood A, Jaskani MJ, Ahmad S, Ahmad R (2013) Evaluation of genetic diversity in open pollinated guava by iPBS primers. Pak J Agric Sci 50:591–597Google Scholar
  32. Morgan ER, Timmerman-Vaughan GM, Conner AJ, Griffin WB, Pickering R (2011) Plant interspecific hybridization: outcomes and issues at the intersection of species. Plant Breed Rev 34:161–220.  https://doi.org/10.1002/9780470880579.ch5 CrossRefGoogle Scholar
  33. Nemli S, Kianoosh T, Tanyolac MB (2015) Genetic diversity and population structure of common bean (Phaseolus vulgaris L.) accessions through retrotransposon based interprimer binding sites (iPBSs) markers. Turk J Agric For 39:940–948.  https://doi.org/10.3906/tar-1505-59 CrossRefGoogle Scholar
  34. Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131:452–462.  https://doi.org/10.1016/j.cell.2007.10.022 CrossRefPubMedGoogle Scholar
  35. Paun O, Fay MF, Soltis DE, Chase MW (2007) Genetic and epigenetic alterations after hybridization and genome doubling. Taxon 56:649–656.  https://doi.org/10.2307/25065850 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115.  https://doi.org/10.1126/science.1178534 CrossRefPubMedGoogle Scholar
  37. Schulman AH, Flavell AJ, Ellis THN (2004) The application of LTR retrotransposons as molecular markers in plants. Methods Mol Biol 260:145–173.  https://doi.org/10.1007/978-1-61779-603-6_7 CrossRefPubMedGoogle Scholar
  38. Seiler G, Qi LL, Marek LF (2017) Utilization of sunflower crop wild relatives for cultivated sunflower improvement. Crop Sci 57:1083–1101.  https://doi.org/10.2135/cropsci2016.10.0856 CrossRefGoogle Scholar
  39. Shaked H, Kashkush K, Ozkan H, Feldman M, Levy AA (2001) Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 13:1749–1759.  https://doi.org/10.1105/TPC.010083 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Smýkal P, Bačová-Kerteszová N, Kalendar R, Corander J, Schulman AH, Pavelek M (2011) Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers. Theor Appl Genet 122:1385–1397.  https://doi.org/10.1007/s00122-011-1539-2 CrossRefPubMedGoogle Scholar
  41. Song K, Lu P, Tang K, Osborn TC (1995) Rapid genome change in synthetic polyploids ofBrassica and its implications for polyploid evolution. Proc Natl Acad Sci U S A 92:7719–7723.  https://doi.org/10.1073/pnas.92.17.7719 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Staton SE, Ungerer MC, Moore RC (2009) The genomic organization of Ty3/gypsy-like retrotransposons in Helianthus (Asteraceae) homoploid hybrid species. Am J Bot 96:1646–1655.  https://doi.org/10.3732/ajb.0800337 CrossRefPubMedGoogle Scholar
  43. Staton SE, Bakken BH, Blackman BK, Chapman MA, Kane NC, Tang S, Ungerer MC, Knapp SJ, Rieseberg LH, Burke JM (2012) The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements. Plant J 72:142–153.  https://doi.org/10.1111/j.1365-313X.2012.05072.x CrossRefPubMedGoogle Scholar
  44. Tate JA, Ni Z, Scheen AC, Koh J, Gilbert CA, Lefkowitz D, Chen ZJ, Soltis PS, Soltis DE (2006) Evolution and expression of homeologous loci in Tragopogon miscellus (Asteraceae), a recent and reciprocally formed allopolyploid. Genetics 173:1599–1611.  https://doi.org/10.1534/genetics.106.057646 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Ungerer MC, Strakosh SC, Zhen Y (2006) Genome expansion in three hybrid sunflower species is associated with retrotransposon proliferation. Curr Biol 16:R872–R873.  https://doi.org/10.1016/j.cub.2006.09.020 CrossRefPubMedGoogle Scholar
  46. Ungerer MC, Strakosh SC, Stimpson KM (2009) Proliferation of Ty3/gypsy-like retrotransposons in hybrid sunflower taxa inferred from phylogenetic data. BMC Biol 7:40.  https://doi.org/10.1186/1741-7007-7-40 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Vassilevska-Ivanova R, Kraptchev B, Stancheva I, Geneva M (2013) A compact sunflower line produced after cross Helinathus annuus x Verbesina encelioides. Centr Eur J Biol 8:492–498.  https://doi.org/10.2478/s11535-013-0147-8 CrossRefGoogle Scholar
  48. Vassilevska-Ivanova R, Kraptchev B, Stancheva I, Geneva M, Iliev I, Georgiev G (2014) Utilization of related wild species (Echinacea purpurea) for genetic enhancement of cultivated sunflower (Helianthus annuus L.). Turk J Agric For 38:15–22.  https://doi.org/10.3906/tar-1210-91 CrossRefGoogle Scholar
  49. Vassilevska-Ivanova R, Kraptchev B, Shtereva L (2015) An intergeneric hybrid line produced after cross Helianthus annuus x Echinacea purpurea. Genet Resour Crop Evol 62:829–836.  https://doi.org/10.1007/s10722-015-0281-z CrossRefGoogle Scholar
  50. Vassilevska-Ivanova R, Shtereva L, Stancheva I, Geneva M (2016) Salt stress response of sunflower breeding lines developed after wide hybridization. Turk J Agric Nat Sci 3:197–204Google Scholar
  51. Vassilevska-Ivanova R, Stancheva I, Geneva M, Tcekova Z (2018) Evaluating an interspecific Helianthus annuus x Helianthus nuttallii line for use in sunflower breeding. Turkish JAF Sci Tech 6:1684–1689.  https://doi.org/10.24925/turjaf.v6i12.1684-1689.1361 CrossRefGoogle Scholar
  52. Vukich M, Giordani T, Natali L, Cavallini A (2009) Copia and gypsy retrotransposons activity in sunflower (Helianthus annuus L.). BMC Plant Biol 9:150.  https://doi.org/10.1186/1471-2229-9-150 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Wang H, Jiang J, Chen S, Qi X, Fang W, Guan Z, Teng N, Liao Y, Chen F (2014) Rapid genetic and epigenetic alterations under intergeneric genomic shock in newly synthesized Chrysanthemum morifolium x Leucanthemum paludosum hybrids (Asteraceae). Genome Biol Evol 6:247–259.  https://doi.org/10.1093/gbe/evu008 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Wessler SR (1996) Turned on by stress. Plant retrotransposons. Curr Biol 6:959–961.  https://doi.org/10.1016/S0960-9822(02)00638-3 CrossRefPubMedGoogle Scholar
  55. Xiong Z, Gaeta RT, Pires JC (2011) Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc Natl Acad Sci U S A 108:7908–7913.  https://doi.org/10.1073/pnas.1014138108 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Yaldiz G, Camlica M, Nadeem MA, Nawaz MA, Baloch FS (2018) Genetic diversity assessment in Nicotiana tabacum L. with iPBS-retrotransposons. Turk J Agric For 42:154–164.  https://doi.org/10.3906/tar-1708-32 CrossRefGoogle Scholar

Copyright information

© Institute of Molecular Biology, Slovak Academy of Sciences 2019

Authors and Affiliations

  • Georgi Nikolaev Bonchev
    • 1
    Email author
  • Roumiana Vassilevska-Ivanova
    • 1
  1. 1.Institute of Plant Physiology and GeneticsBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations