pp 1–9 | Cite as

Effect of temperature and mushroom varieties on biology of fungus gnat, Lycoriella auripila (Diptera: Sciaridae)

  • Najmeh Shirvani Farsani
  • Abbas Ali ZamaniEmail author
  • Saeed Abbasi
  • Katayoon Kheradmand
Original Article


Some biological parameters of Lycoriella auripila were studied under controlled laboratory conditions (temperatures of 8, 10, 12.5, 15, 20, 22.5, 25, 27 and 30 °C). Glass Petri dishes were inoculated with mycelia of two varieties of Agaricus bisporus (A15 and 737) and two varieties of Pleurotus sp. (Ostreatus and Florida), used as substrate and food source. The optimal temperatures to produce more female progeny, were 15, 22.5 and 25 °C on 737, 20 °C on A15, 20 and 25 °C on Florida and 25 °C on Ostreatus, respectively. The obtained results proved unsuitability of oyster mushroom as a food source for L. auripila. The accuracy of different linear models in fitting the experimental data was determined using comparison of coefficients of determination (R2). Accordingly, the ordinary linear regression in the absence of 27 °C, and Ikemoto and Takai models highly recommended for the description of temperature-dependent development of female of L. auripila on 737 and A15, respectively. Based on the obtained data, 25 °C was recognized as the optimum temperature for development of L. auripila on all mushroom varieties.


Agaricus bisporus Sciaridae Pleurotus sp. Biological parameters Isomorphic rate 



We are grateful to the Department of Plant Protection, Razi University, for supporting this project.

Compliance with ethical standards

Conflict of interest

The authors have declared that no conflict of interest exists.


  1. Bergant K, Trdan S (2006) How reliable are thermal constants for insect development when estimated from laboratory experiments? Entomol Exp Appl 120:251–256. CrossRefGoogle Scholar
  2. Binns ES (1973) Laboratory rearing, biology and chemical control of the mushroom sciarid Lycoriella auripila (Diptera: Lycoriidae). Ann Appl Biol 73:119–126. CrossRefGoogle Scholar
  3. Binns ES (1980) Field and laboratory observation on the substrate of the mushroom fungus gnat Lycoriella auripila. Ann Appl Biol 96:143–152. CrossRefGoogle Scholar
  4. Briere JF, Pracros P (1998) Comparison of temperature-dependent growth models with the development of Lobesia botrana (Lep. Tortricidae). Environ Entomol 27:94–101. CrossRefGoogle Scholar
  5. Bryant SR, Shreeve TG (2002) The use of artificial neural networks in ecological analysis: estimating microhabitat temperature. Ecol Entomol 27:424–432. CrossRefGoogle Scholar
  6. Campbell A, Frazer BD, Gilbert N, Gutierrez AP, Mackauer M (1974) Temperature requirements of some aphids and their parasites. J Appl Ecol 11:431–438. CrossRefGoogle Scholar
  7. Chang ST (1996) Mushroom research and development equality and mutual benefit. In: Royse DJ (ed) Mushroom biology and mushroom products. State University Press, Pennsylvania, pp 1–10Google Scholar
  8. Dent DR, Walton MP (1997) Methods in ecological and agricultural entomology. CAB International, CambridgeGoogle Scholar
  9. Fan L, Pan H, Soccol AT, Pandey A, Soccol CR (2006) Advances in mushroom research in the last decade. Food Technol Biotechnol 44:303–331Google Scholar
  10. Fantinou AA, Perdikis DC, Chatzoglou CS (2003) Development of immature stages of Sesamia nonagrioides (Lepidoptera: Noctuidae) under alternating and constant temperatures. Environ Entomol 32:1337–1342. CrossRefGoogle Scholar
  11. Fatzinger CW, Dixon WN (1996) Degree-day models for predicting levels of attack by slash pine flower thrips (Thysanoptera: Phlaeothripidae) and the phenology of female strobilus development on slash pine. Environ Entomol 25:727–735. CrossRefGoogle Scholar
  12. Fletcher JT, Gaze RH (2008) Mushroom Pest and disease control. Manson Publishing, LondonGoogle Scholar
  13. Frouz J, Novakova A (2001) A new method for rearing the sciarid fly, Lycoriella ingenua (Diptera: Sciaridae), in the laboratory: possible implications for the study of fly fungal interactions. Pedobiologia 45:329–340. CrossRefGoogle Scholar
  14. Herrera AM, Dahlsten DD, Tomic-Carruthers N, Carruthers RI (2005) Estimating temperature-dependent developmental rates of Diorhabda elongata (Coleoptera: Chrysomelidae), a biological control agent of saltcedar (Tamarix spp.). Environ Entomol 34:775–784. CrossRefGoogle Scholar
  15. Ηoněk A (1996) The relationship between thermal constants for insect development: a verification. Acta Soc Zool Bohem 60:115–152Google Scholar
  16. Ikemoto T, Takai K (2000) A new linearized formula for the law of total effective temperature and the evaluation of line-fitting methods with both variables subject to error. Environ Entomol 29:671–682. CrossRefGoogle Scholar
  17. Jarosik V, Honek A, Dixon AFG (2002) Developmental rate isomorphy in insects and mites. Am Nat 160:497–510. CrossRefGoogle Scholar
  18. Kheradmand K, Kamali K, Fathipour Y, Mohammadi Goltapeh E (2006) Biology and life table parameters of the mushroom pest, Pediculaster fletchmanni (Acari: Siteroptidae), at three constant temperatures. Insect Sci 13:375–380. CrossRefGoogle Scholar
  19. Kontodimas DC, Eliopoulos PA, Stathas GJ, Economou LP (2004) Comparative temperature-dependent development of Nephus includens (Kirsch) and Nephus bisignatus (Boheman) (Col., Coccinelidae) preying on Planococcus citri (Rossi) (Hom., Peseudococcidae), evaluation of a linear and various nonlinear models using specific. Environ Entomol 33:1–11.
  20. Lamb RJ (1992) Developmental rate of Acyrthosiphon pisum (Homoptera: Aphididae) at low temperatures: implication for estimating rate parameters for insects. Environ Entomol 21:10–19. CrossRefGoogle Scholar
  21. Menzel F, Mohrig W (1997) Family Sciaridae. In: Papp L, Darvas B (eds) Manual of Palaearctic Diptera. Herald, Budapest, pp 51–69. Google Scholar
  22. Richardson PN, Grewal PS (1991) Comparative assessment of biological (Nematoda: Steinernema feltiae) and chemical methods of control for the mushroom fly, Lycoriella auripila (Diptera: Sciaridae). Biocontrol Sci Tech 1:217–228. CrossRefGoogle Scholar
  23. Roy M, Brodeur J, Cloutier C (2002) Relationship between temperature and developmental rate of Stethorus punctillum (Col., Coccinellidae) and its prey Tetranychus mcdaniali (Acarina: Tetranychidae). Environ Entomol 31:177–187. CrossRefGoogle Scholar
  24. Shimoji Y (2011) Effect of temperature on the development of the west Indian sweet potato weevil, Euscepes postfasciatus (Fairmaire) (Coleoptera: Curculionidae) on an artificial diet. Appl Entomol Zool 46:51–54. CrossRefGoogle Scholar
  25. SPSS (2007) SPSS base 16.0 user’s guide. SPSS Incorporation, ChicagoGoogle Scholar
  26. Steffan WA (1974) Laboratory studies and ecological notes on Hawaiian Sciaridae (Diptera). Pac Insects 16:41–50Google Scholar
  27. Wang B, Ferro DN, Wu J, Wang S (2004) Temperature-dependent development and oviposition behavior of Trichogramma ostriniae (Hymenoptera: Trichogrammatidae), a potential biological control agent for the European corn borer (Lepidoptera: Crambidae). Environ Entomol 33:787–793.
  28. White PF (1986) Effects of bendiocarb and diflubenzuron on mushroom cropping. Ann Appl Biol 108:11–20. CrossRefGoogle Scholar
  29. Yanik E, Unlu L (2011) Influences of temperature and humidity on the life history parameters and prey consumption of Anthocoris minki Dohrn (Heteroptera: Anthocoridae). Appl Entomol Zool 46:177–184. CrossRefGoogle Scholar
  30. Zamani AA (2001) Identification of injurious dipterean pest of button mushroom (Agaricus bisporus) and study on some of their biological characteristics in Karaj, Iran. M.Sc. Thesis, University of Tarbiat Modares, IranGoogle Scholar

Copyright information

© Institute of Zoology, Slovak Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Plant Protection, College of AgricultureRazi UniversityKermanshahIran
  2. 2.Department of Entomology and Plant Pathology, College of AburaihanUniversity of TehranTehranIran

Personalised recommendations