Advertisement

Biologia

, Volume 74, Issue 12, pp 1721–1731 | Cite as

Organic and inorganic zinc show similar regulatory effects on the expression of some germ cell specific markers induced in bone marrow mesenchymal stem cells after treatment with retinoic acid

  • Maryam Ghasemzadeh-Hasankolaei
  • Forough Azam Sayahpour
  • Mohammad Ghasemzadeh-HasankolaeiEmail author
  • Mohammad Taghi GhorbanianEmail author
  • Mohamadreza B. EslaminejadEmail author
Original Article
  • 34 Downloads

Abstract

Chemical approaches and small molecules are considered as an inseparable part of regenerative medicine and stem-cell-based therapies. Zinc (Zn) is a well-known trace element essential for normal spermatogenesis and has a regulatory role on the expression of several genes in different tissues of the body. This study determines and compares the effects of organic (acetate, ZnA) and inorganic Zinc (sulfate, ZnS) on the expression of a number of germ cell (GC)-specific genes in retinoic acid (RA)-treated ram bone marrow mesenchymal stem cells (BM-MSCs). First, BM-MSCs were treated with 10 μM RA for 21 days, real-time RT-PCR and immunocytochemistry (ICC) confirmed the expression of the markers in treated cells. Then, in vitro-derived GCs were treated with 1 μM of either ZnS or ZnA for one week. Treatment of in vitro-derived GCs with ZnA significantly downregulated all tested genes. ZnS treatment also induced a significant downregulation in Piwil2 and Vasa, and a moderate decrease in ITG b1 and Oct4 expression levels. Cells treated with ZnS or ZnA showed almost similar gene expression patterns. Zn treatments appeared to make in vitro-derived GCs return to a state similar to the untreated MSCs. We also studied the effects of simultaneous use of RA and one of zinc ions on BM-MSCs. The results showed that presence of organic or inorganic zinc in culture medium containing RA inhibited BM-MSCs to differentiate into GCs. This study showed a new dimension of zinc effect on stem cells which will be really helpful for establishment of novel strategies for Zn applications.

Keywords

Mesenchymal stem cells Germ cell markers In vitro-derived germ cells Retinoic acid Zinc acetate Zinc sulfate 

Abbreviations

Zn

Zinc

ZnA

Zinc acetate

ZnS

Zinc sulfate

RA

Retinoic acid

BM-MSCs

Bone marrow mesenchymal stem cells

MSCs

Mesenchymal stem cells

GCs

Germ Cells

ICC

Immunocytochemistry

RT-PCR

Reverse transcription polymerase chain reaction

Notes

Acknowledgements

This study was supported financially by research grants from Royan Institute (grant No: 160) and Damghan University in collaboration with Babol University of Medical Sciences.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

References

  1. Afsartala Z et al (2016) Amniotic membrane mesenchymal stem cells can differentiate into germ cells in vitro. In Vitro Cell Dev Biol Anim.  https://doi.org/10.1007/s11626-016-0073-6 CrossRefGoogle Scholar
  2. Alam S, Kelleher SL (2012) Cellular mechanisms of zinc dysregulation: a perspective on zinc homeostasis as an etiological factor in the development and progression of breast cancer. Nutrients 4:875–903.  https://doi.org/10.3390/nu4080875 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Beyersmann D, Haase H (2001) Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals 14:331–341.  https://doi.org/10.1023/a:1012905406548 CrossRefPubMedGoogle Scholar
  4. Castrillon DH, Quade BJ, Wang T, Quigley C, Crum CP (2000) The human VASA gene is specifically expressed in the germ cell lineage. Proc Natl Acad Sci 97:9585–9590.  https://doi.org/10.1073/pnas.160274797 CrossRefPubMedGoogle Scholar
  5. Cheah Y, Yang W (2011) Functions of essential nutrition for high quality spermatogenesis. Adv Biosci Biotechnol 2:182.  https://doi.org/10.4236/abb.2011.24029 CrossRefGoogle Scholar
  6. Croxford TP, McCormick NH, Kelleher SL (2011) Moderate zinc deficiency reduces testicular Zip6 and Zip10 abundance and impairs spermatogenesis in mice. J Nutr 141:359–365.  https://doi.org/10.3945/jn.110.131318 CrossRefPubMedPubMedCentralGoogle Scholar
  7. da Silva Meirelles L, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119:2204–2213.  https://doi.org/10.1242/jcs.02932 CrossRefPubMedGoogle Scholar
  8. Ding S, Schultz PG (2005) Small molecules and future regenerative medicine. Curr Top Med Chem 5:383–395.  https://doi.org/10.2174/1568026053828402 CrossRefPubMedGoogle Scholar
  9. Drusenheimer N et al (2006) Putative human male germ cells from bone marrow stem cells. Soc Reprod Fertil Suppl 63:69–76Google Scholar
  10. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic transplants of bone marrow transplantation 6:230–247CrossRefGoogle Scholar
  11. Ghasemi N, Babaei H, Azizallahi S, Kheradmand A (2009) Effect of long-term administration of zinc after scrotal heating on mice spermatozoa and subsequent offspring quality. Andrologia 41:222–228.  https://doi.org/10.1111/j.1439-0272.2009.00920.x CrossRefPubMedGoogle Scholar
  12. Ghasemzadeh-Hasankolaei M, Eslaminejad M, Batavani R, Sedighi-Gilani M (2014) Comparison of the efficacy of three concentrations of retinoic acid for transdifferentiation induction in sheep marrow-derived mesenchymal stem cells into male germ cells. Andrologia 46:24–35.  https://doi.org/10.1111/and.12037 CrossRefPubMedGoogle Scholar
  13. Ghasemzadeh-Hasankolai M, Batavani R, Eslaminejad MB, Sedighi-Gilani M (2012) Effect of zinc ions on differentiation of bone marrow-derived mesenchymal stem cells to male germ cells and some germ cell-specific gene expression in rams. Biol Trace Elem Res 150:137–146.  https://doi.org/10.1007/s12011-012-9484-8 CrossRefPubMedGoogle Scholar
  14. Hu J et al (2016) Zinc chloride transiently maintains mouse embryonic stem cell pluripotency by activating stat3 signaling. PLoS One 11:e0148994.  https://doi.org/10.1371/journal.pone.0148994 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hua J, Pan S, Yang C, Dong W, Dou Z, Sidhu KS (2009a) Derivation of male germ cell-like lineage from human fetal bone marrow stem cells. Reprod BioMed Online 19:99–105.  https://doi.org/10.1016/S1472-6483(10)60052-1 CrossRefPubMedGoogle Scholar
  16. Hua J et al (2009b) Characterization of mesenchymal stem cells (MSCs) from human fetal lung: potential differentiation of germ cells. Tissue Cell 41:448–455.  https://doi.org/10.1016/j.tice.2009.05.004 CrossRefPubMedGoogle Scholar
  17. Huang P et al (2010) Differentiation of human umbilical cord Wharton's jelly-derived mesenchymal stem cells into germ-like cells in vitro. J Cell Biochem 109:747–754.  https://doi.org/10.1002/jcb.22453 CrossRefPubMedGoogle Scholar
  18. Johnson J et al (2005) Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell 122:303–315.  https://doi.org/10.1016/j.cell.2005.06.031 CrossRefPubMedGoogle Scholar
  19. Krampera M, Franchini M, Pizzolo G, Aprili G (2007) Mesenchymal stem cells: from biology to clinical use. Blood Transfus 5:120.  https://doi.org/10.2450/2007.0029-07 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lacham-Kaplan O (2004) In vivo and in vitro differentiation of male germ cells in the mouse. Reproduction 128:147–152.  https://doi.org/10.1530/rep.1.00220 CrossRefPubMedGoogle Scholar
  21. Li W, Li K, Wei W, Ding S (2013) Chemical approaches to stem cell biology and therapeutics. Cell Stem Cell 13:270–283.  https://doi.org/10.1016/j.stem.2013.08.002 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods 25:402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefPubMedGoogle Scholar
  23. Luo J, Megee S, Rathi R, Dobrinski I (2006) Protein gene product 9.5 is a spermatogonia-specific marker in the pig testis: application to enrichment and culture of porcine spermatogonia. Mol Reprod Dev 73:1531–1540.  https://doi.org/10.1002/mrd.20529 CrossRefPubMedGoogle Scholar
  24. Ma L et al (2005) Human umbilical cord Wharton's Jelly-derived mesenchymal stem cells differentiation into nerve-like cells. Chin Med J 118:1987–1993PubMedGoogle Scholar
  25. MacDonald RS (2000) The role of zinc in growth and cell proliferation. J Nutr 130:1500S–1508S.  https://doi.org/10.1093/jn/130.5.1500S CrossRefPubMedGoogle Scholar
  26. Marquez-Curtis LA, Janowska-Wieczorek A, McGann LE, Elliott JA (2015) Mesenchymal stromal cells derived from various tissues: biological, clinical and cryopreservation aspects. Cryobiology 71:181–197.  https://doi.org/10.1016/j.cryobiol.2015.07.003 CrossRefPubMedPubMedCentralGoogle Scholar
  27. McLaren A, Durcova-Hills G (2001) Germ cells and pluripotent stem cells in the mouse. Reprod Fertil Dev 13:661–664.  https://doi.org/10.1071/RD01080 CrossRefPubMedGoogle Scholar
  28. Mokarizadeh A, Rezvanfar MA, Dorostkar K, Abdollahi M (2013) Mesenchymal stem cell derived microvesicles: trophic shuttles for enhancement of sperm quality parameters. Reprod Toxicol 42:78–84.  https://doi.org/10.1016/j.reprotox.2013.07.024 CrossRefPubMedGoogle Scholar
  29. Nayernia K et al (2006) Derivation of male germ cells from bone marrow stem cells. Lab Investig 86:654–663.  https://doi.org/10.1038/labinvest.3700429 CrossRefPubMedGoogle Scholar
  30. Nishant K, Prashad R, Prasad L (2006) Effect of different levels and sources of zinc supplementation on quantitative and qualitative semen attributes and serum testosterone level in crossbred cattle (Bos indicus× Bos taurus) bulls. Reprod Nutr Dev 46:663–675.  https://doi.org/10.1051/rnd:2006041 CrossRefGoogle Scholar
  31. Nygaard SB, Larsen A, Knuhtsen A, Rungby J, Smidt K (2014) Effects of zinc supplementation and zinc chelation on in vitro beta-cell function in INS-1E cells. BMC Res Notes 7:84.  https://doi.org/10.1186/1756-0500-7-84 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Rosenzweig DH, Ou SJ, Quinn TM (2013) P38 mitogen-activated protein kinase promotes dedifferentiation of primary articular chondrocytes in monolayer culture. J Cell Mol Med 17:508–517.  https://doi.org/10.1111/jcmm.12034 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Sargazi M, Shenkin A, Roberts NB (2013) Zinc induced damage to kidney proximal tubular cells: studies on chemical speciation leading to a mechanism of damage. J Trace Elem Med Biol 27:242–248.  https://doi.org/10.1016/j.jtemb.2012.12.004 CrossRefPubMedGoogle Scholar
  34. Sliwinski T, Czechowska A, Kolodziejczak M, Jajte J, Wisniewska-Jarosinska M, Blasiak J (2009) Zinc salts differentially modulate DNA damage in normal and cancer cells. Cell Biol Int 33:542–547.  https://doi.org/10.1016/j.cellbi.2009.02.004 CrossRefPubMedGoogle Scholar
  35. Wang T, Zhang J-C, Chen Y, Xiao P-G, Yang M-S (2007) Effect of zinc ion on the osteogenic and adipogenic differentiation of mouse primary bone marrow stromal cells and the adipocytic trans-differentiation of mouse primary osteoblasts. J Trace Elem Med Biol 21:84–91.  https://doi.org/10.1016/j.jtemb.2007.01.002 CrossRefPubMedGoogle Scholar
  36. Xu Y, Shi Y, Ding S (2008) A chemical approach to stem-cell biology and regenerative medicine. Nature 453:338–344.  https://doi.org/10.1038/nature07042 CrossRefPubMedGoogle Scholar
  37. Yamaguchi S, Miura C, Kikuchi K, Celino FT, Agusa T, Tanabe S, Miura T (2009) Zinc is an essential trace element for spermatogenesis. Proc Natl Acad Sci 106:10859–10864.  https://doi.org/10.1073/pnas.0900602106 CrossRefPubMedGoogle Scholar
  38. Zhou Q et al (2016) Complete meiosis from embryonic stem cell-derived germ cells in vitro. Cell Stem Cell 18:330–340.  https://doi.org/10.1016/j.stem.2016.01.017 CrossRefPubMedGoogle Scholar
  39. Zuk PA (2010) The adipose-derived stem cell: looking back and looking ahead. Mol Biol Cell 21:1783–1787.  https://doi.org/10.1091/mbc.E09-07-0589 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Institute of Molecular Biology, Slovak Academy of Sciences 2019

Authors and Affiliations

  • Maryam Ghasemzadeh-Hasankolaei
    • 1
    • 2
  • Forough Azam Sayahpour
    • 2
  • Mohammad Ghasemzadeh-Hasankolaei
    • 3
    Email author
  • Mohammad Taghi Ghorbanian
    • 1
    Email author
  • Mohamadreza B. Eslaminejad
    • 2
    Email author
  1. 1.Department of Cellular & Molecular Biology, School of BiologyDamghan UniversityDamghanIran
  2. 2.Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
  3. 3.Stem Cell Research Lab., Infertility and Reproductive Health Research Center, Health Research InstituteBabol University of Medical SciencesBabolIran

Personalised recommendations