, Volume 74, Issue 12, pp 1675–1686 | Cite as

Presence/absence of a CACTA transposon in the CYC2c gene of two genotypes of Helianthus × multiflorus cv. “Meteor” characterized by a radiate inflorescence with different shape of disk flower corollas

  • Marco Fambrini
  • Claudio PugliesiEmail author
Original Article


Helianthus × multiflorus is a triploid (2n = 51) interspecific hybrid derived from the cross of H. decapetalus with H. annuus that exists in radiate and ligulate inflorescence types. The H. × multiflorus “Soleil d’Or” has a ligulate inflorescence, with actinomorphic corolla of disk flowers converted in zygomorphic ray-like corollas. In “Soleil d’Or”, a truncated CACTA transposable element (TE), named CTEHM1, is integrated in the HmCYC2c gene, a key player controlling zygomorphism in the Helianthus genus. Here, we showed that H. × multiflorus “Meteor”, originated from a mutation of “Soleil d’Or”, exists in two different types of radiate inflorescence, here named “Meteor 1” and “Meteor 2”. Notably, in “Meteor 1”, which displayed a corolla of disk flowers typical for the Helianthus genus, CTEHM1 was transposed from the HmCYC2c gene. In contrast, the CTEHM1 TE was still present in the HmCYC2c gene of “Meteor 2”. In this genotype, the largest corolla of the disk flowers shows some features of the ray flowers giving rise to a radiate inflorescence unusual for the Helianthus genus. The in silico analysis of CTEHM1 also highlights the presence of a 202 bp CpNpG island, which is a putative target of methylation. Interestingly, the gene expression of the HmCYC2c gene was significantly higher in disk flowers of “Meteor 2” compared to “Meteor 1”. Stated these results, we suggest that both the excision of a TE and an epigenetic regulation of gene expression generate the two-inflorescence types of H. × multiflorus, “Meteor 1” and “Meteor 2”.


CACTA transposable elements Carotenoids Flower symmetry Helianthus × multiflorus Inflorescence architecture 





Coding sequence




Disk flowers


basic Helix-Loop-Helix




Ray flowers


Real-Time quantitative PCR




Teosinte Branched1


Transcription factor


Transcription Start Site


Transposable element


CACTA Transposable Element of Helianthus × multiflorus1

3-, 5’-UTR

3′-, 5′-untranslated region



We are indebted to Mariangela Salvini and Gabriele Usai for assistance in bioinformatics analyses.


The Special Fund 2017–2018 of the University of Pisa funded this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Compliance with ethical standards

Conflict of interest

Marco Fambrini declares that he has no conflict of interest. Claudio Pugliesi declares that he has no conflict of interest.

Supplementary material

11756_2019_301_MOESM1_ESM.pdf (176 kb)
ESM 1 (PDF 176 kb)
11756_2019_301_MOESM2_ESM.pdf (176 kb)
ESM 2 (PDF 175 kb)
11756_2019_301_MOESM3_ESM.pdf (107 kb)
ESM 3 (PDF 107 kb)
11756_2019_301_MOESM4_ESM.pdf (210 kb)
ESM 4 (PDF 209 kb)
11756_2019_301_MOESM5_ESM.pdf (174 kb)
ESM 5 (PDF 174 kb)
11756_2019_301_MOESM6_ESM.pdf (149 kb)
ESM 6 (PDF 148 kb)
11756_2019_301_MOESM7_ESM.pdf (328 kb)
ESM 7 (PDF 328 kb)


  1. Abbott RJ, James JK, Milne RI, Gillies ACM (2003) Plant introduction, hybridization and gene flow. Philos Trans R Soc Lond Ser B Biol Sci 358:1123–1132. CrossRefGoogle Scholar
  2. Aggarwal P, Gupta MD, Joseph AP, Chatterjee N, Srinivasan N, Nath U (2010) Identification of specific DNA binding residues in the TCP family of transcription factors in Arabidopsis. Plant Cell 22:1174–1189. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy SR, Griffiths-Jones S, Howe KL, Marshall M, Sonnhammer ELL (2002) The pfam protein families database. Nucleic Acids Res 30:276–280. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Baumbach J, Pudake RN, Johnson C, Kleinhans K, Ollhoff A, Palmer RG, Bhattacharyya MK, Sandhu D (2015) Transposon tagging of a male-sterility, female-sterility gene, St8, revealed that the meiotic MER3 DNA helicase activity is essential for fertility in soybean. PLoS One 11(3):e0150482. CrossRefGoogle Scholar
  6. Bello MA, Álvarez I, Torices R, Fuertes-Aguilar J (2013) Floral development and evolution of capitulum structure in Anacyclus (Anthemideae, Asteraceae). Ann Bot 112:1597–1612. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Berger BA, Thompson V, Lim A, Ricigliano V, Howarth DG (2016) Elaboration of bilateral symmetry across Knautia macedonica capitula related to changes in ventral petal expression of CYCLOIDEA-like genes. EvoDevo 7(8).
  8. Berti F, Fambrini M, Turi M, Bertini D, Pugliesi C (2005) Mutations of corolla symmetry affect carpel and stamen development in Helianthus annuus. Can J Bot 83:1065–1072. CrossRefGoogle Scholar
  9. Broholm SK, Tähtiharju S, Laitinen RAE, Albert VA, Teeri TH, Elomaa P (2008) A TCP domain transcription factor controls flower type specification along the radial axis of the Gerbera (Asteraceae) inflorescence. Proc Natl Acad Sci U S A 105:9117–9122. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Broholm SK, Teeri TH, Elomaa P (2014) Molecular control of inflorescence development in Asteraceae. Adv Bot Res 72:297–333. CrossRefGoogle Scholar
  11. Busch A, Zachgo S (2009) Flower symmetry evolution: towards understanding the abominable mystery of angiosperm radiation. Bioessays 31:1181–1190. CrossRefPubMedGoogle Scholar
  12. Carlson SE, Howard DG, Donoghue MJ (2011) Diversification of CYCLOIDEA-like genes in Dipsacaceae (Dipsacales): implications for the evolution of capitulum inflorescences. BMC Evol Biol 11:325. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chapman MA, Leebens-Mack JH, Burke JM (2008) Positive selection and expression divergence following gene duplication in the sunflower CYCLOIDEA gene family. Mol Biol Evol 25:1260–1273. CrossRefPubMedGoogle Scholar
  14. Chapman MA, Tang S, Draeger D, Nambeesan S, Shaffer H, Barb JG, Knapp SJ, Burke JM (2012) Genetic analysis of floral symmetry in Van Gogh’s sunflowers reveals independent recruitment of CYCLOIDEA genes in the Asteraceae. PLoS Genet 8(3):e1002628. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Claßen-Bockhoff R (1990) Pattern analysis in pseudanthia. Plant Syst Evol 171:57–88. CrossRefGoogle Scholar
  16. Cubas P, Lauter N, Doebley J, Coen E (1999) The TCP domain: a motif found in proteins regulating plant growth and development. Plant J 18:215–222. CrossRefPubMedGoogle Scholar
  17. Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance. Nature 386:485–488. CrossRefPubMedGoogle Scholar
  18. Dong ZY, Wang YM, Zhang ZJ, Shen Y, Lin XY, Ou XF, Han FP, Liu B (2006) Extent and pattern of DNA methylation alteration in rice lines derived from introgressive hybridization of rice and Zizania latifolia Griseb. Theor Appl Genet 113:196–205 CrossRefGoogle Scholar
  19. Dubin MJ, Mittelsten Scheid O, Becker C (2018) Transposons: a blessing curse. Curr Opin Plant Biol 42:23–29. CrossRefPubMedGoogle Scholar
  20. Elomaa P, Zhao Y, Zhang T (2018) Flower heads in Asteraceae-recruitment of conserved developmental regulators to control the flower-like inflorescence architecture. Hort Res 5:36. CrossRefGoogle Scholar
  21. Falquet L, Pagni M, Bucher P, Hulo N, Sigrist CJ, Hofmann K, Bairoch A (2002) The PROSITE database, its status in 2002. Nucleic Acids Res 30:235–238. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Fambrini M, Pugliesi C (2017a) CYCLOIDEA 2 clade genes: key players in the control of floral symmetry, inflorescence architecture, and reproductive organ development. Plant Mol Biol Report 35:20–36. CrossRefGoogle Scholar
  23. Fambrini M, Pugliesi C (2017b) Mobilization of the Tetu1 transposable element of Helianthus annuus: evidence for excision in different developmental stages. Biol Plant 61:55–63. CrossRefGoogle Scholar
  24. Fambrini M, Castagna A, Dalla Vecchia F, Degl’Innocenti E, Ranieri A, Vernieri P, Pardossi A, Guidi L, Rascio N, Pugliesi C (2004) Characterization of a pigment-deficient mutant of sunflower (Helianthus annuus L.) with abnormal chloroplast biogenesis, reduced PS II activity and low endogenous level of abscisic acid. Plant Sci 167:79–89. CrossRefGoogle Scholar
  25. Fambrini M, Michelotti V, Pugliesi C (2007) The unstable tubular ray flower allele of sunflower: inheritance of reversion to wild type. Plant Breed 126:548–550. CrossRefGoogle Scholar
  26. Fambrini M, Salvini M, Pugliesi C (2011) A transposon-mediate inactivation of a CYCLOIDEA-like gene originates polysymmetric and androgynous ray flowers in Helianthus annuus. Genetica 139:1521–1529. CrossRefPubMedGoogle Scholar
  27. Fambrini M, Salvini M, Basile A, Pugliesi C (2014a) Transposon-dependent induction of Vincent van Gogh’s sunflowers: exceptions revealed. genesis 52:315–327. CrossRefPubMedGoogle Scholar
  28. Fambrini M, Basile A, Salvini M, Pugliesi C (2014b) Excisions of a defective transposable CACTA element (Tetu1) generate new alleles of a CYCLOIDEA-like gene of Helianthus annuus. Gene 549:198–207. CrossRefPubMedGoogle Scholar
  29. Fambrini M, Bellanca M, Costa Muñoz M, Usai G, Cavallini A, Pugliesi C (2018) Ligulate inflorescence of Helianthus × multiflorus, cv. Soleil d’Or, correlates with a mis-regulation of a CYCLOIDEA gene characterised by insertion of a transposable element. Plant Biol 20:956–967. CrossRefPubMedGoogle Scholar
  30. Fedoroff NV (2013) Molecular genetics and epigenetics of CACTA elements. In: Peterson T (ed) Plant transposable elements: methods and protocols. Humana Press, Totowa, pp 177–192CrossRefGoogle Scholar
  31. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. CrossRefGoogle Scholar
  32. Felsenstein J (1989) PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics 5:164–166Google Scholar
  33. Feschotte C (2008) Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9:397–405. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Frey M, Spring O (2015) Molecular traits to elucidate the ancestry of Helianthus × multiflorus. Biochem Syst Ecol 58:51–58. CrossRefGoogle Scholar
  35. Garcês HMP, Spencer VMR, Kim M (2016) Control of floret symmetry by RAY3, SvDIV1B and SvRAD in the capitulum of Senecio vulgaris. Plant Physiol 171:2055–2068. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Graham ET, Trentham WR (1998) Staining paraffin extracted, alcohol rinsed and air dried plant tissue with an aqueous mixture of three dyes. Biotech Histochem 73:178–185CrossRefGoogle Scholar
  37. Harris EM (1995) Inflorescence and floral ontogeny in Asteraceae: a synthesis of historical and current concepts. Bot Rev 61:93–278. CrossRefGoogle Scholar
  38. He J-X, Chen T, Zhu J-K (2011) Regulation and function of DNA methylation in plants and animals. Cell Res 21:442–465. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Heiser CB Jr, Smith DM (1960) The origin of Helianthus multiflorus. Am J Bot 47:860–865CrossRefGoogle Scholar
  40. Hileman LC (2014a) Bilateral flower symmetry - how, when and why? Curr Opin Plant Biol 17:146–152. CrossRefPubMedGoogle Scholar
  41. Hileman LC (2014b) Trends in flower symmetry evolution revealed through phylogenetic and developmental genetic advances. Philos Trans R Soc Lond Ser B Biol Sci 369:20130348. CrossRefGoogle Scholar
  42. Hirsh CD, Springer NM (2017) Transposable element influences on gene expression in plants. Bioch Biophys Acta 1860:157–165. CrossRefGoogle Scholar
  43. Howarth DG, Donoghue MJ (2006) Phylogenetic analysis of the “ECE” (CYC/TB1) clade reveals duplications predating the core eudicots. Proc Natl Acad Sci U S A 103:9101–9106. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Huang D, Li X, Sun M, Zhang T, Pan H, Cheng T, Wang J, Zhang Q (2016) Identification and characterization of CYC-like genes in regulation of ray floret development in Chrysanthemum morifolium. Front Plant Sci 7:1633. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Jeffrey C (1977) Corolla forms in Compositae - some evolutionary and taxonomic speculations. In: Heywood VH, Harborne JB, Turner BL (eds) The biology and chemistry of the Compositae, vol 1. Academic Press, London, pp 111–118Google Scholar
  46. Juntheikki-Palovaara I, Tähtiharjiu LT, Broholm K, Rijpkena AS, Ruonala R, Kale L, Albert VA, Teeri TH, Elomaa P (2014) Functional diversification of duplicated CYC2 clade genes in regulation of inflorescence development in Gerbera hybrida (Asteraceae). Plant J 79:783–796. CrossRefPubMedGoogle Scholar
  47. Kim M, Cui M-L, Cubas P, Gillies A, Lee K, Chapman MA, Abbott RJ, Coen E (2008) Regulatory genes control key morphological and ecological trait transferred between species. Science 322:1116–1119. CrossRefPubMedGoogle Scholar
  48. Kishimoto S, Sumitomo K, Yagi M, Nakayama M, Ohmiya A (2007) Three routes to orange petal color via carotenoid components in 9 compositae species. J Japan Soc Hort Sci 76:250–257. CrossRefGoogle Scholar
  49. Kosiol C, Goldman N (2005) Different versions of the Dayhoff rate matrix. Mol Biol Evol 22:193–199. CrossRefPubMedGoogle Scholar
  50. Krizek EM, Fletcher JC (2005) Molecular mechanisms of flower development: an armchair guide. Nat Rev Genet 6:688–698. CrossRefPubMedGoogle Scholar
  51. Langer M, Sniderhan LN, Grossniklaus U, Ray A (2007) Transposon excision from an atypical site: A mechanism of evolution of novel transposable elements. PLoS One 2(10):e965. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using Real-Time quantitative PCR and the 2−ΔΔC T method. Methods 25:402–408. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Luo D, Carpenter R, Vincent C, Copsey L, Coen E (1996) Origin of floral asymmetry in Antirrhinum. Nature 383:794–799. CrossRefPubMedGoogle Scholar
  54. Luo D, Carpenter R, Copsey L, Vincent C, Clark J, Coen ES (1999) Control of organ asymmetry in flowers of Antirrhinum. Cell 99:367–376. CrossRefPubMedGoogle Scholar
  55. Margush T, McMorris FR (1981) Consensus n-trees. Bull Math Biol 43:239–244Google Scholar
  56. Martín-Trillo M, Cubas P (2010) TCP genes: a family snapshot ten years later. Trends Plant Sci 15:31–39. CrossRefPubMedGoogle Scholar
  57. Mizzotti C, Fambrini M, Caporali E, Masiero S, Pugliesi C (2015) A CYCLOIDEA-like gene mutation in sunflower determines an unusual floret type able to produce filled achenes at the periphery of the pseudanthium. Botany 93:171–181. CrossRefGoogle Scholar
  58. Mount E (2015) A helianthus by any other name – full circle. Hardy Plant 36:77–79Google Scholar
  59. Moyroud E, Glover BJ (2017) The evolution of diverse floral morphologies. Curr Biol 27:R941–R951. CrossRefPubMedGoogle Scholar
  60. Nath U, Crawford B, Carpenter B, Coen E (2003) Genetic control of surface curvature. Science 299:1404–1407. CrossRefPubMedGoogle Scholar
  61. Offenthal R, Kaiser K (1999) Some perennial sunflowers. Hardy Plant 21:38–48Google Scholar
  62. Ong-Abdullah M, Ordway JM, Jiang N, Ooi SE, Kok SY, Sarpan N, Azimi N, Hashim AT, Ishak Z, Rosli SK, Malike FA, Bakar NA, Marjuni M, Abdullah N, Yaakub Z, Amiruddin MD, Nookiah R, Singh R, Low ET, Chan KL, Azizi N, Smith SW, Bacher B, Budiman MA, Van Brunt A, Wischmeyer C, Beil M, Hogan M, Lakey N, Lim CC, Arulandoo X, Wong CK, Choo CN, Wong WC, Kwan YY, Alwee SS, Sambanthamurthi R, Martienssen RA (2015) Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature 525:533–537. CrossRefPubMedPubMedCentralGoogle Scholar
  63. Preston JC, Hileman LC (2009) Developmental genetics of floral symmetry evolution. Trends Plant Sci 14:147–154. CrossRefPubMedGoogle Scholar
  64. Preston JC, Hileman LC (2012) Parallel evolution of TCP and B-class genes in Commelinaceae flower bilateral symmetry. EvoDevo 3:6. CrossRefGoogle Scholar
  65. Rakyan VK, Blewitt ME, Druker R, Preis JI, Whitelaw E (2002) Metastable epialleles in mammals. Trends Genet 18:348–351. CrossRefGoogle Scholar
  66. Rice P, Longden I, Bleasby A (2000) EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet 16:276–277. CrossRefPubMedPubMedCentralGoogle Scholar
  67. Rigal M, Mathieu O (2011) A “mille-feuille” of silencing: epigenetic control of transposable elements. Biochim Biophys Acta 1809:452–458. CrossRefPubMedGoogle Scholar
  68. Robinson W (1883) The english flower garden. John Murray, LondonGoogle Scholar
  69. Ruzin SE (1999) Plant microtechnique and microscopy. Oxford University Press, New York, OxfordGoogle Scholar
  70. Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285. CrossRefPubMedGoogle Scholar
  71. Specht CD, Howarth DG (2015) Adaptation in flower form: a comparative evodevo approach. New Phytol 206:74–90. CrossRefPubMedGoogle Scholar
  72. Spencer V, Kim M (2018) Re"CYC"ling molecular regulators in the evolution and development of flower symmetry. Semin Cell Dev Biol 79:16–26. CrossRefPubMedGoogle Scholar
  73. Spring O, Schilling EE (1990) The origin of Helianthus × multiflorus and H. × laetiflorus (Asteraceae). Biochem Syst Ecol 18:19–23. CrossRefGoogle Scholar
  74. Tähtiharju S, Rijpkema AS, Vetterli A, Albert VA, Teeri TH, Elomaa P (2012) Evolution and diversification of the CYC/TB1 gene family in Asteraceae – a comparative study in gerbera (Mutisieae) and sunflower (Heliantheae). Mol Biol Evol 29:1155–1166. CrossRefPubMedGoogle Scholar
  75. Takahashi R, Morita Y, Nakayama M, Kanazawa A, Abe J (2012) An active CACTA-family transposable element is responsible for flower variegation in wild soybean Glycine soja. Plant Genome 5:62–70. CrossRefGoogle Scholar
  76. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. CrossRefPubMedPubMedCentralGoogle Scholar
  77. Verhoeven KJF, van Dijk PJ, Biere A (2010) Changes in genomic methylation patterns during the formation of triploid asexual dandelium lineages. Mol Ecol 19:315–324. CrossRefPubMedGoogle Scholar
  78. Viola IL, Reinheimer R, Ripoli R, Uberti Manassero NG, Gonzalez DH (2012) Determinants of the DNA binding specificity of class I and class II TCP transcription factors. J Biol Chem 287:347–356. CrossRefPubMedGoogle Scholar
  79. Wittmeyer K, Cui J, Chatterjiee D, Lee T-f, Tan Q, Xue W, Jiao Y, Wang P-H, Gaffoor I, Ware D, Meyers BC, Chopra S (2018) The dominant and poorly penetrant phenotype of maize Unstable factor for orange1 are caused by DNA methylation changes at a linked transposon. Plant Cell 30:3006–3023. CrossRefPubMedPubMedCentralGoogle Scholar
  80. Zhong J, Kellogg EA (2015) Duplication and expression of CYC2-like genes in the origin and maintenance of corolla zygomorphy in Lamiales. New Phytol 205:852–868. CrossRefPubMedGoogle Scholar

Copyright information

© Institute of Molecular Biology, Slovak Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly

Personalised recommendations